
Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 39-41

39

Parallel Quicksort Algorithm Application

Fatin Ameera bt Alissak #1, Mohamed Faidz Mohamed Said #2

Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 ameera.alfa@gmail.com

2 faidzms@ieee.org

Abstract—Experienced algorithm designers depend vigorously on

an arrangement of building blocks and on the tools expected to

assemble the blocks into a calculation. This presentation outlines

the general engineering of the parallel vector models; introduces

two imperative classes of primitive instructions, the scan and

segmented instructions; shows how the model and the instructions

can be used to assemble part of a parallel quicksort calculation.

The engineering of a V-RAM states that the machine is a random

access machine with the expansion of a vector memory, a parallel

vector processor, and a vector input/output port. Every area of

the vector memory can contain a vector of various length. The

parallel vector processor executes operations on entire vectors.

Keywords: Parallel, Quicksort, Algorithm, PRAM

I. INTRODUCTION

Experienced algorithm designers depend vigorously on an

arrangement of building blocks and on the tools expected to

assemble the blocks into a calculation. The understanding of

these basic blocks and tools is thus basic to the understanding

of algorithms. Many of the blocks and tools required for

parallel algorithms reach out from successive algorithms, for

example, dynamic-programming and divide-and-conquer. The

researcher presents one of the easiest and most helpful building

blocks for parallel algorithms the all-prefix sums operation.

The researcher also characterizes the operation, demonstrates

how to implement a P-RAM and shows numerous utilizations

of the operation [2].

The researcher describes GPU-Quicksort, an efficient

Quicksort calculation appropriate for exceptionally parallel

multi-center graphics processors. Quicksort has already been

viewed as an inefficient sorting answer for graphics processors,

yet we demonstrate that in CUDA, NVIDIA's customizing

stage for universally useful calculations on graphical

processors, GPU-Quicksort performs superior to the speediest

known sorting usage for graphics processors, for example,

radix and bitonic sort. Quicksort can in this manner be seen as

a reasonable elective for sorting vast amounts of information

on graphics processors [3].

In most parallel random-access machine (P-RAM) models,

memory references are expected to take unit time. In principle,

certain scan operations, otherwise called prefix calculations,

can execute in no additional time than these parallel memory

references. Cederman and Tsigas [4] plot a broad investigation

of the effect of incorporating into the P-RAM models, such

scan operations as unit-time primitives. The study infers that

the primitives make strides the asymptotic running time of

many algorithms by 0 factor [5], significantly improve the

portrayal of many algorithms, and are significantly less

demanding to actualize than memory references. The algorithm

designer should feel free to use these operations because they

were as cheap as a memory reference.

II. BACKGROUND

Blelloch and Maggs [5] recommend an adjustment in the

basic models used for examining parallel calculations. In

particular, it proposes that we move far from utilizing

theoretical performance models based on machines to utilizing

models based on languages. As said in the article, some

reference works as of now casually break down parallel

calculations as far as work and profundity before mapping

them onto a PRAM.

Blelloch and Maggs [5] purpose that the additional

progression be taken of formalizing a model based on work

and profundity. With this formal model, the PRAM can be

removed of the circle, straightforwardly mapping the model

onto more reasonable machines. We moreover contend that

language-based models appear to be the most sensible

approach to characterize a programming model based on work

and profundity.

Cederman and Tsigas [6] depict a powerful parallel

algorithmic execution of Quicksort, GPU-Quicksort, proposed

to misuse the astoundingly parallel nature of configuration

processors (GPUs) and their confined store memory. Quicksort

has long been viewed as one of the speediest sorting

calculations practically speaking for single processor

frameworks and is additionally a standout amongst the most

contemplated sorting calculations, however as of recently it has

not been viewed as an efficient sorting answer for GPUs.

Cederman and Tsigas [6] demonstrate that GPU-Quicksort

presents a reasonable sorting elective and that it can beat other

GPU-based sorting calculations, for example, GPUSort and

radix sort, considered by numerous to be two of the best GPU-

sorting calculations. GPU-Quicksort is intended to exploit the

high transfer speed of GPUs by minimizing the measure of

accounting and between string synchronization required. It

accomplishes this by utilizing a two-pass outline to keep the

between string synchronization low, and mixing read

operations and compelling strings so memory gets to are kept.

III. METHODOLOGY

This presentation plots the general building of the parallel

vector models; presents two basic classes of primitive

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 39-41

40

guidelines, the sweep and portioned directions; indicates how

the model and the directions can be utilized to gather part of a

parallel quicksort estimation [7].

A strange state, normally parallel, depiction of quicksort in

the lingo SETL. The parameters are an arrangement of data

keys. The structure s gives back the span of s, subjective s

gives back a discretionarily chosen part of s, and annexes two

successions. Ideally, we might want to make an interpretation

of this depiction into capable code for a wide variety of

designs, furthermore to choose the nature of the figuring on

different hypothetical models. This book recommends that the

parallel vector models are an OK premise on which to

combine these objectives [7].

Figure 1. [7]

Blelloch [7] shows the designing of a V-RAM and

expresses the machine is an irregular access machine [1] with

the extension of a vector memory, a parallel vector processor,

and a vector information/yield port. Each zone of the vector

memory can contain a vector of different length. The parallel

vector processor executes operations on whole vector.

Figure 2. [7]

Essentially as with a discretionary access machine [1]

model or the Turing machine model [8], the parallel vector

models are accommodatingly described similarly as a machine

outline, the vector RAM (V-RAM). The V-RAM is a standard

serial RAM with the expansion of a vector memory and a

vector processor as in Figure 2. Each memory region in the

vector memory can contain a self-assertively long vector of

nuclear qualities; the vector length is associated with the vector

not the memory region. Each heading of the vector processor

deals with a settled number of vectors from the vector memory

and maybe scalars from the scalar memory. A vector guideline

may, for instance, total the components of a vector, revamp the

request of the components of a vector, or union the components

of two sorted vectors as in Figure 3.

Figure 3. [7]

The venture change anticipated that would change over the

SETL code, which chooses components of s not exactly the

turn x, into guidelines for a parallel vector machine ($ is the

comment character in SETL). Likewise, an instance of the

execution of the vector directions, besides, versatile nature of

the vector model code.

Figure 4. [7]

The quicksort calculation just utilizing parallelism inside

each square yields a stage diverse quality corresponding to the

quantity of pieces O(n). Basically, utilizing parallelism from

running the pieces in parallel yields a phase versatile quality

in any occasion relative to the greatest square O(n). By using

both types of parallelism the progression intricacy is

proportional to the profundity of the tree expected O[9].

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 39-41

41

Figure 5. [7]

Sintorn and Assarsson [9] presents a computation for fast

sorting of far reaching records utilizing cutting edge GPUs.

The technique performs rapid by effectively using the

parallelism of the GPU all through the whole count. At first,

GPU-based bucketsort or quicksort parts the once-over into

enough sublists then to be sorted in parallel utilizing mix sort.

The computation is of unpredictability n log n, and for game

plans of 8M components and utilizing a solitary Geforce

8800GTS-512, it is 2.5 times as brisk as the bitonic sort

figurings, with standard many-sided quality of n(log n)^2,

which for long was thought to be the speediest for GPU

sorting. It is 6 times speedier than single CPU quicksort, and

10% faster than the late GPU-based radix sort. At last, the

computation is further parallelized to utilize two outlines

cards, bringing about yet another 1.8 times speedup.

Sorting is a general issue in software engineering.

Mergesort [10] is a surely understood sorting calculation of

complexity O(n log n), and it can without much of a stretch be

implemented on a GPU that backings scattered writing. The

GPU-sorting calculations are very bandwidth-restricted, which

is represented for instance by the actuality that bitonic sorting

of 8-bit values [11] are nearly four times speedier than for 32-

bit values [12]. To upgrade the rate of memory comprehends,

we along these lines outline a vector-based mergesort,

utilizing CUDA and log n render goes, to manage four 32-bit

floats at the same time, bringing about an almost 4 times

speed change appeared differently in relation to solidification

sorting on single floats. The Vector-Mergesort of two four

float vectors is refined by utilizing a uniquely created parallel

take a gander at and-swap estimation, on the 8 info floats to

each string running the CUDA center.

Be that as it may, the calculation turns out to be extremely

wasteful for the last m passes, where m = log 2p and p is the

quantity of processors on the GPU. The reason is that

parallelism is lost when the quantity of remaining records is

less than double the quantity of processors. We take care of

this issue by at first using a parallel GPU-based bucketsort

[13] or quicksort [14], isolating the data list into ≥ 2p cans,

trailed by consolidation sorting the substance of every pail, in

parallel.

IV. CONCLUSION

GPU-based sorting calculation had been introduced. It is a

creamer that at first uses one go of bucket sort to part the data

list into sublists which then are sorted in parallel using a

vectorized variant of parallel consolidation sort. The

estimation is then exhibit generally performs to some degree

speedier than the radix sort, using a single configuration card,

and is on a very basic level snappier than other prior GPU-

based sorting counts. It is a solicitation of degree snappier

than single CPU quicksort. The calculation is unimportant to

assist parallelize utilizing double representation cards,

bringing about moreover 1.8 times speedup. While GPUSort

records genuine timings for the nearest upper force of two

size. STL Sort is a CPU-based speedy sort usage.

REFERENCES

[1] C. C. Elgot and A. Robinson, "Random-access stored-program
machines, an approach to programming languages," in Selected

Papers, ed: Springer, 1982, pp. 17-51.

[2] G. E. Blelloch, "Prefix sums and their applications," 1990.

[3] G. E. Blelloch, "Scans as primitive parallel operations,"

Computers, IEEE Transactions on, vol. 38, pp. 1526-1538, 1989.

[4] D. Cederman and P. Tsigas, "A practical quicksort algorithm for
graphics processors," in Algorithms-ESA 2008, ed: Springer, 2008,

pp. 246-258.

[5] G. E. Blelloch and B. M. Maggs, "Parallel algorithms," in
Algorithms and theory of computation handbook, 2010, pp. 25-25.

[6] D. Cederman and P. Tsigas, "Gpu-quicksort: A practical quicksort

algorithm for graphics processors," Journal of Experimental
Algorithmics (JEA), vol. 14, p. 4, 2009.

[7] G. E. Blelloch, Vector models for data-parallel computing vol. 75:

MIT press Cambridge, 1990.
[8] A. Church, "Turing AM. On computable numbers, with an

application to the Entscheidungs problcm. Proceedings of the

London Mathematical Society, 2 s. vol. 42 (1936–1937), pp. 230–
265," The Journal of Symbolic Logic, vol. 2, pp. 42-43, 1937.

[9] E. Sintorn and U. Assarsson, "Fast parallel GPU-sorting using a

hybrid algorithm," Journal of Parallel and Distributed Computing,
vol. 68, pp. 1381-1388, 2008.

[10] K. E. Batcher, "Sorting networks and their applications," in

Proceedings of the April 30--May 2, 1968, spring joint computer
conference, 1968, pp. 307-314.

[11] N. K. Govindaraju, N. Raghuvanshi, M. Henson, and D. Manocha,

"A cache-efficient sorting algorithm for database and data mining
computations using graphics processors," University of North

Carolina, Tech. Rep, 2005.

[12] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha,
"GPUTeraSort: high performance graphics co-processor sorting for

large database management," in Proceedings of the 2006 ACM

SIGMOD international conference on Management of data, 2006,
pp. 325-336.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

"Introduction to algorithms second edition," The Knuth-Morris-
Pratt Algorithm”, year, 2001.

[14] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, "Scan

primitives for GPU computing," in Graphics hardware, 2007, pp.
97-106.

