
Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 1-6

1

New Algorithm for Computing Transitive Closure of

Data Records Application
Affariza binti Musa #1, Mohamed Faidz Mohamed Said #2

 # Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 affariza.musa10@gmail.com

2 faidzms@ieee.org

Abstract— Information quality change has gotten to be definitive

issue for some associations and organizations since poor

information quality debases authoritative execution though

enhanced information quality results in consumer loyalty and

cost sparing. The performance such as recognize and removing

“duplicate” database records from a single database, and

correlating records from different databases that identify the

same real world “entity” are used routinely to develop data

quality. These calculations dodge the repetitive calculations and

high stockpiling cost found in various comparable calculations.

Utilizing reproduction, this paper looks at the execution of the

new calculations with those found in writing and shows plainly

the prevalence of the new calculations. Due to huge databases

having several hundred million to several billion records, and

continuously growing, efficient techniques and algorithms are

needed. This paper is present the new algorithm for computing

the transitive closure of large database relations and present the

simulation results that show that these direct algorithms perform

uniformly better than the best of the iterative algorithms. The

alleged "transitive conclusion issue" is a formal detailing of what

should be done in step one. This paper presents a record

gathering issue called transitive conclusion and proposes

calculations to take care of the transitive conclusion issue. The

paper additionally writes about the exact investigation of the

proposed calculations and remarks on their executions.

Keywords: transitive closure, algorithm, large database

I. INTRODUCTION

The importance of data quality has been realized by most

companies. [15] State that over 80% agreed improving

customer data quality was their top priority. Although, the

complexity of implementing such task will add the high cost of

cleansing data. Depending on company size and the amount of

data you need to clean, the reported cost ranges from $100,000

and $500, 000 [1].

The large database relations are a similar research effort is

required investigation of algorithms for computing transitive

closure. There are two categories know in the transitive closure

algorithms which are iterative algorithms and direct algorithm

[1]

The key for applications in communication systems is the

performance of expert database systems. Evaluation of

recursive queries is the main interest in expert database

systems. Recursive queries are used efficient evaluation of

transitive closure as a paradigm [7].

It is an important step towards the development of the

future intelligent database systems by developing efficient

algorithms for processing the transitive closure queries [13].

In this paper, a present new algorithm for implementing

transitive closure in database corner [1] and demonstrates the

analysis tools for achieving data quality in terms of,

consistency, data accuracy, redundancy, currency and

completeness [15]. In this paper, the excessive rounds of

communication are avoided and fast access paths are preserved

to present the data of a binary relation by designed a special

scheme [7].

The organization of this paper will be as follows. In Section

2, the well-known direct algorithms for computing Transitive

Closure is described of Boolean matrix and the calculations

could be utilized as a part of the setting of social databases is

appeared. Segment 3 is the heart of this paper where we

introduce new direct calculations for registering the transitive

conclusion of extensive database relations. In Section 4, we

propose a technique for assessing the execution of recursive

questions and assess the execution of the calculations created

in Section 3 against the best iterative calculation. At last, in

Section 5, we outline the principle finishes of this study [1].

II. NAÏVE DIRECT ALGORITHMS

In this section, this paper is briefing a review of some well-

known calculations that were initially foreseen to process the

transitive conclusion of Boolean lattics. The new calculations

that we propose in Section 3 have been propelled by these

calculations. This paper likewise demonstrates for the reasons

for comparability how one could acquire in basic adaption of

these calculations to process the transitive conclusion of the

database relations [1].

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 1-6

2

2.1 The Warshall Algorithm
Given an initial v x v Boolean matrix of elements aij

over a v node graph, with uij being 1 if there is an arc
from node i to node j and 0 otherwise, its transitive

closure can be obtained as:

1. CLOSURE MAT

2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5 CLOSURE(i; j) CLOSURE(i, j) (CLOSURE(i;

k) CLOSURE(k; j))

This algorithm involves three for loops, with two of them nested. Each

loop iterates from 1 to n. This gives us a time complexity of O(n3). If we were

to find the transitive closure using the matrix multiplication method we would
get a time complexity of O(n4). Each time a matrix multiplication is

performed the time complexity is O(n3) as there are three loops running (two

nested) from 1 to n. The matrix multiplications are carried out a total of n - 1

times to find matrices (MR)

2

 , (MR)

3

 … (MR)

n

 , since
RM = MR

(MR)

2

 ... (MR)

n

 . So the number of steps involved are n3(n- 1),

giving us a time complexity of O(n4) [5].

2.2 The Warren Algorithm

For i-l to v

 For k-l to i-l

 For j-1 to v

 aij = aij (aij akj)

The main change is that the i and k circles have been

traded. In any case, this trade could bring about a few ways

being passed up a major opportunity thus the calculation now

requires two "goes" before it finishes. The adjustment in the

scope of the second circle record, k, is a streamlining that

decreases the expense of two passes [1].

2.3 Other Direct Algorithm

This algorithm avoids the redundant computations found in Semi-naive

and uses linear data structures to store its intermediate results. To process a
query, Jiang’s algorithm adopts a mixture of breadth-first search and some

form of depth-first search strategies. To illustrate the basic idea behind Jiang’s

algorithm, consider the computation of the PTCs relevant to the source nodes
a and h of the graph in Fig. 1.

The storage of the Partially instantiated Transitive Closure (PTC)s for

those nodes in the base graph with more than one incoming edge ensures that
a given node in the base graph (and the portion of the graph reachable from

that node) will be processed at most once (such a processing is carried out

during the computation of the PTC relevant to that node; any future reference
to the same node will make use of the corresponding stored PTC), thus

eliminating the need to traverse any edge in the base graph more than once

[14].

Figure 1. A base graph [14]

III. EFFICIENT DIRECT ALGORITHMS

In this segment, this paper is available a few alterations of

the calculations examined in the past segment and propose

some non-evident executions that hope to perform much

superior to the guileless usage talked about above. Every one

of the calculations beneath accept that the underlying

connection has been sorted on the fields taking an interest in

the transitive conclusion so that every one of the "successors"

of a given hub can be found on an adjoining set of tuples in

the connection.

This examination expects that the connection whose transitive

conclusion is to be processed is huge contrasted with the

memory accessible and must be divided into pieces each of

which can fit in memory. A parcel will comprise of the

successor arrangements of a few hubs. These rundowns

develop as the conclusion is registered, and the underlying

parcels may no more fit in the memory. To handle this

circumstance, the greater part of the calculations beneath

depends on element parcels. As the calculation continues, if

the memory begins topping off, some successor records are

erased or composed pull out of memory to be incorporated

into the following segment that is perused in.

Algorithm 1: Block Warshall

For each column partition

 (columns jb to jc inclusive)

/* Processing of diagonal block */

 For j - jb to jc

 For i - jb to jc,

 If tuple <i, j > exists

 Add succ. list j to succ. list i

/* Processing of off-diagonal rows */

For i - 1 to v i jb to jc,

 For j - jb to jc,

 If tuple <i, j > exists

 Add succ. list j to succ. list i

Figure 2 shows a 7 x 7 matrix and the order in which the

elements of this matrix will be processed using the Blocked

Warshall algorithm.

Figure 2. The order of computation in the Blocked Warshall algorithm [1]

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 1-6

3

Note that the equation is centered using a center tab stop.

Be sure that the symbols in your equation have been defined

before or immediately following the equation. Use “Eq. 1” or

“Equation 1”, not “(1)”, especially at the beginning of a

sentence: “Equation 1 is . . .”

Algorithm 2: Block Warshall

/* First Pass */

For each row partition (rows ib to ic, inclusive)

 For j - 1 to ic,

 For i - ib to ic,

 If tuple <i, j > exists

 Add succ. list j to succ. list i

/* Second Pass */

For each row partition (rows ib to ic inclusive)

 For j - ib to n

 For i - ib to ic,

 If tuple Xi, j > exists

 Add succ. list j to succ. list i

In the second pass, one could recollect the whole last

component in every column analyzed in the main pass (recall

that we assessed past the corner to corner component by and

large) and inspect the rest. Moreover, the line dividing in the

second pass need not be same as in the primary pass.

Figure 3 shows the order in which the elements of a 7 x 7

matrix will be processed using the Blocked Warren algorithm.

The horizontal lines bracket the row partitions and the thick

stair-way lines separate the two passes. Notice that the order of

computation is significantly different from the straight Warren,

straight Warshall, or Blocked Warshall.

Figure 3. The order of computation in the Blocked Warrren algorithm singular

[1]

Table 1. Synthetic Database[1]

Type Name Number

of

Nodes

Number

of Arcs

Nominal

Out

Degree

Nominal

Arc

Length

Avg.

Arc

Length

Arcs

in

Result

Uniformly

Random

u.1

u.10

2700

300

2685

2165

1

10

Large

Large

564.2

47.4

49873

50601

Random

with High

Locality

h.1

h.10

2612

390

2596

1603

1

10

1

1

1.6

2.0

46127

50092

Random

with

Medium

Locality

m.1

m.10

7200

230

7152

2031

1

10

10

10

10.5

11.4

50036

50601

Tree t.1

t.10

1720

1200

1731

12196

1a

10a

 50282

50176

Inverted

Tree

It.1

It.10

1720

1200

1731

12196

1a

10a

 50282

50176

a: Average Out-degree of non-leaf nodes. b: Average In-degree of non-leaf

nodes

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 1-6

4

IV. COMPARATIVE PERFORMANCE OF THE ALGORITHM

Figure 4. Comparative performance of the three algorithms (Total I/O)

[1]

All in all, Block Warren performs superior to the next

two calculations, most importantly as the level of the

chart increments and region is missing. The explanation

behind this activity is that every successor rundown is

prone to be upgraded all the more frequently, the higher

the level of the diagram. Without area, because of

communication with a wide range of hubs which are all

in various allotments these redesign. Without territory,

these redesigns will all occur because of cooperation

with a wide range of hubs which are all in various

segments. On account of the two Warshall calculations, a

successor rundown is composed back subsequent to

being upgraded once for every allotment handled. In

Warren, the rundown is composed back just once, when

the parcel to which this rundown has a place is handled.

The lower composing expenses of Warren, in this

manner, are clear [1].

Figure 5 demonstrates 2 transitive terminations for

these 12 records. The first incorporates R1, R2, R3, R5,

R6, R9, R10, R11, and R12. The second one incorporates

R4, R7 and R8. Figure 3 likewise demonstrates w key or

keys make a couple of records identified with one and

another. For instance, R4 and R7 are identified with each

other by Key 2, which implies their second keys are

distinguishable. Thus, R9 and R10 are identified with

Figure 5. Transitive Closure problem for Direct Algorithm [15]

The proposed calculations accept that they should

figure both the connection amongst records and the

transitive terminations these relations characterize from

the information record document. As said before, these

are two free yet related exercises. A marginally

distinctive method for planning the transitive conclusion

issue is that the relations are given and the comparing

transitive terminations must be processed. One method

for determining the relations is by giving an arrangement

of record matches or key sets. A calculation was likewise

produced for this rendition of the transitive conclusion

issue. It utilizes the disjoint set find and union idea and

productive information structures. It takes the model

calculation under 21 minutes to complete the transitive

conclusion calculation for an information document

comprising of 122,915,040 records of number sets. The

record size is around 8GB. The system kept running on a

solitary 2.8 GHz Dell PC running Windows XP [14].

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 1-6

5

Figure 6. Disjoint-Set Find and Union (identical keys are indicated by same color) [15]

Journal of Advanced Computing Research 1 (2016) 1-6

6

V. CONCLUSION

In this paper, the significance of information quality is talked

about. The paper studies and looks at the execution of a few

calculations transitive conclusion issues is reasonable to enhance
the execution of the investigation apparatuses, transitive conclusion

issue is presented and planned. The consequences of the study

recommend that the relative execution of the calculations is a solid
capacity of the parameters which portray the prepared inquiry and

the base connection referenced by that question. The velocity

change accomplished by the super-TC calculation is credited to the
way that the super-TC deals with its relegated segment of

fundamental memory more shrewdly than the S-wavefront

calculation does.
The advancement of proficient calculations to handle the

diverse types of the transitive conclusion inquiries inside the

setting huge database frameworks has as of late pulled in an
extensive volume of examination exertion. The execution of the

investigation apparatuses, transitive conclusion issue is presented

and figured.

ACKNOWLEDGEMENTS

Alhamdulillah, first of all, I would like to thank

God as finally I able to finish my conference paper

that has been given by my lecturer, Dr Mohammad

Faidz Bin Mohammad Said. Even though, there are a

lot of problems during the process making this paper.

Luckily, all the problems that faced by me have a

solution with help from my friends. Besides that, I

would like to thank you to all my friends because

they help me a lot when I want to finish this

conference paper. I also want to thank you to

Universiti Tekologi MARA (UiTM) because give me

an opportunity to learn more about this course,

Parallel Programming (CSC 580).

REFERENCES

[1] Agrawal, R., & Jagadish, H. V., Direct Algorithms for

Computing the Transitive Closure of Database Relations,

Proceedings of the 13th VLDB Conference, Brighton, 255-266,
1987.

[2] Chakradhar, S. T., Agrawal, V. D., & Rothweiler, S. G., A
Transitive Closure Algorithm for Test Generation, IEEE

Transaction on Computer-Aided Design of Integrated Circuits and
Systems, 12(7), 1015 – 1027, 1993.

[3] Chen, Y., A New Algorithm for Transitive Closures and

Computation of Recursion in Relational Databases, Natural
Sciences and Engineering Council of Canada, 2003.

[4] Dar, S., & Agrawal, R., Extending SQL with Generalized

Transitive Closure, IEEE Transactions on Knowledge and Data
Engineering, 5(5), 799-811, 1993.

[5] Eqbal, R., Lecture 23 Composition of Relations, Transitive

Closure and Warshall's Algorithm, Department of Computer

Science and Engineering IIT Kharagpur, 2008.

[6] Garmendia, L., Campo, R. G. d., López, V., & Recasens, J.,
An Algorithms to Compute the Transitive Closure, a Transitive

Opening of a Fuzzy Proximity, Mathware and Soft Computing, 16,
175-191, 2009.

[7] Guh, K.-C., Evaluation of Transitive Closure in Distributed

Database System, IEEE Journal On Selected Areas in
Communications, 7(3), 399-407, 1989.

[8] Hirvisalo, V., Nuutila, E., & Soisalon-Soininen, E., Transitive

Closure Algorithm MEMTC and Its Performance Analysis,
Discrete Applied Mathematics, 110, 77-84, 2001.

[9] Ioannidis, Y. E., & Rantakrishnan, R., Efficient Transitive

Closure Algorithms, Proceedings of the 14th VLDB Conference
Los Angeles, California, 382-394, 1988.

[10] Naessens, H., Meyer, H. D., & Baets, B. D., Algorithms for
the Computation of T-Transitive Closures, IEEE Transactions on
Fuzzy System, 10(4), 541 – 551, 2002.

[11] Nuutila, E., & Soinien, E. S., A Single-Pass Algorithm for
Transitive Closure, 1993.

[12] Purdom, P. W., A Transitive Closure Algorithm. BIT

Numerical Mathematics, 10(1), 76-94. doi: 10.1007/BF01940892,
1968.

[13] Qadah, G. Z., Henschen, L. J., & Kim, J. J., Efficient

Algorithms for the Instantiated Transitive Closure Queries, IEEE
Transactions on Software Engineering, 17(3), 296-309, 1991.

[14] Toroslu, l. H., & Qadah, G. Z., The Strong Partial Transitive
-Closure Problem Algorithm and Performance Evaluation, IEEE

Transaction on Knowledge and Data Engineering, 8(4), 617-629,
1996.

[15] Zhang, J., Bheemavaram, R., & Li, W. N., Transitive

Closure of Data Records Application and Computation, ALAR
Conference on Applied Research in Information Technology, 71-
81, 2006.

