
Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 31-34

31

Recognizing Unordered Depth-First Search

Trees of an Undirected Graph in Parallel
Sharifah Nursyuhada binti Syed Zulkafli #1, Mohamed Faidz Mohamed Said #2

Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 syhdzkfli@gmail.com

2 faidzms@ieee.org

Abstract—Depth First Search (DFS) is surely

understood by the imperative procedure to planning

successive calculations at charts. DFS systems can be

parallelized as the one that can be expected, a great deal

of successive diagram calculations should also be

possible. In this study, assumption of P as an undirected

diagram and W as a traversing tree of P. An effective

parallel calculation is introduced for figuring out if W is

an unordered profundity first pursuit branch of W. The

proposed calculation keeps running in O (n/q + log n)

period utilizing processors on the EREW PRAM, where

n is the quantity of edges contained in G. It is cost-ideal

and accomplishes direct speed.

Keywords: DFS branch, spanning trees, parallel

algorithms, PRAM

I. INTRODUCTION

Depth First Search is well known as DFS, is

surely understood by the imperative procedure to

planning successive calculations at charts [13]. DFS

systems can be parallelized as the one that can be

expected, a great deal of successive diagram

calculations should be possible also. Lamentably,

paper [10] demonstrated that it appears to be difficult

to check effectively in parallel whether a given

request of vertices is equivalent to the meeting

arrangement acquired by playing out a requested DFS

at a chart, to infer that requested DFS is intrinsically

consecutive. Accordingly, numerous specialists

swung their attention to other related themes. At the

point when the requested confinement is expelled, the

positive feedback can be known. Paper [5] introduced

the O (log n) period parallel unordered DFS

calculation on planar undirected diagrams. Paper [1]

introduced the randomized NC calculation for

performing unordered DFSs on general coordinated

diagrams. Inverse to the development of a DFS

branch, paper [11] determined the issue by figuring

out if a given spreading over branch of a coordinated

diagram is an unordered DFS branch of the chart. It

also demonstrated the difficult that can be understood

in (log^2 m) period [11].

The issue for inspect in order to give traversing

branch of an undirected outline is an unordered DFS

branch of the graph is portrayed [6]. This

demonstrates undirected chart containing vertices v

and d(≥m-1) edges, its unordered DFS branch can be

perceived in U(M/P + log m) period utilizing p on the

EREW PRAM.

Issue that confirming in order to give spanning

tree fulfills some particular properties is of

hypothetical interest. Consequently, the issue of

perceiving different spreading over branch had been

broadly examined in written works. For instance,

other than DFS branch, paper [8] concentrated on the

issue of perceiving expansiveness first pursuit trees,

papers [14] and [2] examined the issue of perceiving

least traversing branch, and considered the issue of

perceiving most brief way branch [9]. An efficient

algorithm for perceiving DFS branch has a few

applications [7], [11]. For instance, in paper [11], that

was specified that an effective calculation for

perceiving DFS branch can be utilized as a subroutine

for a calculation that develops a DFS branch by

progressively producing hopefuls until a legitimate

one is acquired. Two illustrations were given by the

researcher [7]. Consider an undirected chart G in

which no two edges has the same weight. Other than

being of hypothetical intrigue, the acknowledgment

issue of DFS branch is additionally of down to earth

significance. In this present reality, a calculation

situation is not generally dependable. Consequently,

that is important to confirm the yields of a DFS

branch development calculation or to make sure the

correctness of a DFS branch inputted into a method.

Let the Q = (R,S) is an undirected diagram made

out of |S| = k vertices and |E| = d(≥m-1) edges. An

unordered depth-first search branch of J is an

established spreading over branch of J yield by

playing out the accompanying nondeterministic DFS

calculation.

Finding 1 (Unordered depth-first search)

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 31-34

32

In: An undirected connected graph F.

Out: An unordered DFS branch Z of F.

A. Select a vertex rv as the starting point.

B. Call DFS(rv).

Step for DFS (rv)

I. Point the rv as the visited.

II. Every vertex p is together with rv

III. If and only the mark(rv,p) was not visited then

it will call as an edge of Z and call DFS(p)

Firstly, step A is chosen and it is dealt of the base

yield DFS tree. As known that Steps A and II are

nondeterministic, it might be more unordered DFS

branch is shown. The perceive an unordered DFS

branch is to figure out if a traversing branch is a

conceivable yield of the under unordered profundity

first hunt calculation, choose a meeting request. Truth

be told, if Z is known not an unordered DFS branch

of diagram G, the meeting request that will infer by

playing out a preorder traversal on Q utilizing the

calculation [3].

Steps A and II are nondeterminism made the

affirmation issue perplexed. Two phases are accepted

deterministic, illustration that a specific crest c will

relegated as an establishment of Z, and for each

vertex r we cross the abutting vertices of v taking

after the solicitation of the suggested proximity once-

over of it. By then, to figure out if Z is a DFS branch

or not can be basically done in straight period using

the standard significance first chase computation.

Make sure that if the two phases are deterministic, the

got DFS branch is asked. In case solitary step II is

nondeterministic and a specific vertex r is allotted as

the establishment of Q, check adequately by using the

famous characteristic of DFS branch: Q is a DFS

branch if and just if Q do not have the cross edge

[11].

For the circumstances that have both Steps A and

II are nondeterministic, an immediate period

progressive figuring. Korach and Ostfeld [7] are the

individuals that presented seeing unordered DFS

trees. An acknowledgment issue of the instance of

coordinated charts is the characterized comparably.

An acknowledgment issue based on coordinated

diagrams is difficult than on undirected charts, in

light of the fact that an undirected chart can be

effectively changed over into a guided one by

supplanting each undirected edge (rv,p) with two

coordinated edges (rv,p) and also (rv,p) and after that

can be unraveled by utilizing the calculations for

coordinated charts. Schevon and Vitter demonstrated

that the acknowledgment of unordered DFS branch

for coordinated charts should possible in (log^2 m)

period using U(n^2376) processors on a CREW

PRAM.

In the coordinated case, there are only peaks of

the in degree 0 in the coordinated crossing branch Z,

and therefore the root is constantly assigned. In this

study, it also demonstrates that an acknowledgment

of undirected charts without an assigned root should

be possible in U (n/q + log m) parallel period

utilizing p processors on the EREW PRAM. The real

strategy used in the calculations is the Euler tour

method [4], [12], [15], that is understood becoming a

decent worldview of outlining productive parallel

calculations.

II. A NECESSARY AND SUFFICIENT

CONDITION FOR RECOGNIZING DFS TREES

Let Q = (R,S) be an undirected diagram made out

of, |S| = k vertices and |E| = d(≥m-1) edges and Q be a

spreading over tree of Z.

Figure 1. A spanning tree Z of a graph F

The branch edges are just a simple path that comes

from a branch path. Knowing that branch way

interfacing any two vertices v and c is one of a kind,

it can be known meant as branch path (i,c). The

crossing tree Q is a free branch, that is, there will be

no root assigned. At the point when a root r is

relegated for Q, the spreading over branch will be

signified as Q®.

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 31-34

33

Overall the case, all non-tree edges will be ordered

into two types that are cross edges and back edges. A

non-tree edge (i,c) is known as a cross edge if i and c

are not progenitors to each other; else, it can be

known as a back edge. Surely it can be understood

that Q® is a DFS branch of G if and just if there do

not have cross edge, or proportionally, all the non-

tree edges are back edges [11]. For instance, reflect

the branch Z and the chart G portrayed in Figure 1 In

the event that chooses v1 as the root, it is not DFS

branch because it has two types of edges that is

(v2,v4) and (v2,v5). Then again, in the event that

choose v2 as the root, Q(v2) is a DFS branch because

no cross edge was found in the branch. In this study

issue, the base is found spreading over branch Q that

not assigned. So that vertex rv of Q can be the root

that is Q(v) is a DFS branch, it is important to check

for each vertex v whether all non-tree edges are back

edges regarding Q(v). Such a vertex v is known as a

competitor base of Q. We ought to know about that

the expressions "cross edge" and "back edge" are

important just for an established tree. The back edge

can be said as other root, meanwhile a non-branch

edge can be a cross edge.

Theorem A

Theorem B

III. A SEQUENTIAL RECOGNITION

ALGORITHM

In this segment, the Euler-visit was applied in the

issue and consecutive calculation was calculated to

determine the accuracy of the methodology.

Successive calculation will be effectively parallelized

the most.

Let Q = (R, S) be an undirected graph and Q be and

spanning branch of Z. First, determine an arbitrary

vertex b in S and orient Q into a rooted branch Q®

Then, input the set H = S-∪ (e ∈ E -Q) CROSS(e) by

initially setting H. The S and then pruning away from

U the vertices in CROSS. e for every non-branch edge

e ∈ E – Q.

Figure 2. A spanning tree Z of a graph Q

In this study, it determines the branch Z and the graph

Q is depicted in Figure 2. The v4 was assumed as the

root of Z. Firstly, set H = (v1, v2 . . . v6). There are

three non-branch edges, i.e. (v2, v4, v2, v5, and v3,

v5). According to Theorem B, vertices v1 and v3 are

pruned away from H for the non-tree edge (v2, v4)

since they are in the sub tree rooted at v3 child (v4,

v2) but not in the sub branch rooted at v2. According

to Theorem A, vertices v1, v3, v4, and v6 are pruned

away from H for the non-branch edge (v2, v5),

therefore v2 and v5 are not the two sub branch

respectively. Similarly, vertices v4 and v6 are pruned

away from H for the non-tree edge (v3, v5), therefore

v3 and v5 are not the two sub branch respectively.

That only vertices remain in the branch after the

pruning is v2 and v5.

Clearly to perform Theorem A and B effectively,

ought to have the capacity to determine if a peak is

inside the sub branch and set up at another peak. By

prudence of this, Euler visits can be exceptionally

useful. For an established branch Q®, an Euler visit

can coordinated way beginning and closure at k and

navigating every branch edge forward and in reverse

precisely once. An Euler visit for the established

branch Z (v4) portrayed in Figure 2 is

v4 →v3→v1→v2→v3→v4→v5→v4→v6→v4

An Euler circuit can be built, basically put on a

profundity first inquiry on the given branch Q®, and

record the succession of went to edges. An Euler visit

is typically spoken to by an arrangement of vertices

inter weaved with bolt signs. As a result of the

meaning of an Euler visit, the data about all sub

branch of Q® is put away in its Euler visit. All in all,

the sub branch established at a peak in Q® compares

to the subsequence encased by the first and the last

events of the peak in the Euler visit. On the off

chance that a vertex is a leaf in Q®, then it happens in

the Euler visit precisely once and its sub branch is

this vertex itself. In view of the above property,

Journal of Advanced Computing Research Vol. 1, Issue 1 (2016) 31-34

34

Theorem A and B can be effortlessly executed by

utilizing Euler visits. From the above talk, whether Q

is a DFS branch of G can be perceived utilizing the

accompanying strides. To determine Q is as DFS

branch of G can be shown by using some tips.

1. The arbitrary peak k is selected and situates Q to

the established branch Q®.

2. An Euler visit U of Q® is developed. Note that

the arrangement of vertices in U is equivalent to V

3. An each cross edge s = (i,c) as for Q®, prune far

from U the vertices outside the two subsequences

relating to the two sub branch established at v and

c, separately.

4. For each back edge s = (i,c) as for Q®, expecting

v is a predecessor of w, first find child (i,c), and

after that prune far from U the vertices that

compare to the sub branch established at child

(i,c), aside from the vertices that relate to the sub

branch established at w.

It might be P(a) can be pruned by the vertices of

each non-branch edge and there are P(b) non-branch

edges, a direct execution will take P(ab) time. To

decrease the time many-sided quality, the vertex-

pruning methodology will be actualized by a prefix

entirety calculation along the Euler visit. It will

allocate +1 to the coordinated edge before vi, -1 to the

coordinated edge after vj, and 0 to all other

coordinated edges and vertices. After a prefix

aggregate operation is played out, the prefix

aggregates of the vertices in this subsequence are 1,

and the prefix aggregates of different vertices are 0,

which is shown as takes after. For a case in point,

refer to the accompanying chart. On the off chance

that the subsequence of vertices from vi to vk ought to

be pruned, we allocate +1 to the coordinated edge

before vi and -1 to the one after vk. On the off chance

that the subsequence of vertices is another from vj to

versus to be prune, +1 and also -1 will be allocated to

the coordinated edges before vj and after versus,

separately. For the various coordinated edges and

vertices, allocate 0. The prefix aggregate will be

performed and the vertices with prefix that more than

0 are prune away.

IV. CONCLUSION

Depth First Search systems can be parallelized as the

one that can be expected, a great deal of successive

diagram calculations should also be possible. In this

study, an undirected diagram and a traversing tree has

been shown. An effective parallel calculation is

introduced, and the proposed calculation keeps

running in O (n/q + log n) period utilizing processors,

where n is the quantity of edges and it is cost-ideal

and accomplishes direct speed. In the sequential

recognition algorithm segment, the Euler-visit was

applied, and consecutive calculation was made to

determine the accuracy of the methodology.

Successive calculation will be most effectively

parallelized.

REFERENCES

[1] A. Aggarwal, R.J. Anerson, and M.-Y. Kao, "Parallel Depth-

FirstSearch in General Directed Graphs," SIAM J.
Computing, vol. 19, no. 2, pp. 397-409, 1990.

[2] B. Chazelle, "Computing on a Free Tree Via Complexity-

Preserving Mapping," Algorithmica, vol. 3, pp. 337-361,
1987.

[3] C.C.-Y. Chen, S.K. Das, and S.G. Akl, "A Unified

Approach to Parallel Depth-First Traversals of General
Trees," Information Processing Letters, vol. 38, pp. 49-55,

1991.

[4] U. Vishkin, "On Efficient Parallel Strong Orientation,"
Information.

[5] T. Hagerup, "Planar Depth-First Search in O.log n. Parallel

Time,"SIAM J. Computing, vol 19, no. 4, pp. 678-704,
1990.

[6] J. JaJa, An Introduction to Parallel Algorithms. Addison

Wesley, 1992.
[7] E. Korach and Z. Ostfeld, "DFS Tree Construction:

Algorithms and Characterizations," Proc. 14th Int'l

Workshop Graph-Theoretic Concepts in Computer Science
(WG-88), 1988.

[8] U. Manber, "Recognizing Breadth-First Search Trees in

Linear Time," Information Processing Letters, vol. 34, pp.
167-171, 1990.

[9] C.-H. Peng, J.-S. Wang, and R.C.-T. Lee, "Recognizing

Shortest- Path Trees in Linear Time," Information
Processing Letters, vol. 57, pp. 78-85, 1994.

[10] J.H. Reif, "Depth-First Search Is Inherently Sequential,"

Information Processing Letters, vol. 20, pp. 229-234, 1985.
[11] C.A. Schevon and J.S. Vitter, "A Parallel Algorithm for

Recognizing Unordered Depth-First Search," Information

Processing Letters, vol. 28, pp. 105-110, 1988.

[12] B. Schieber and U. Vishkin, "On Finding Lowest Common

Ancestors: Simplification and Parallelization," SIAM J.

Computing, vol. 17, pp. 1,253-1,262, 1988.
[13] R.E. Tarjan, "Depth-First Search and Linear Graph

Algorithms," SIAM J. Computing, vol. 1, pp. 814-830,

1972.
[14] R.E. Tarjan, "Applications of Path Compression on

Balanced Trees," J. ACM, vol. 26, pp. 690-715, 1979.

[15] R.E. Tarjan and U. Vishkin, "An Efficient Parallel
Biconnectivity Algorithm," SIAM J. Computing, vol. 14, pp.

862-874, 1985.

