
Journal of Advanced Computing Research Vol. 2, Issue 1 (2017) 16-18

16

Parallel Processing Problem and Solution - A

Case Study on MATLAB Parallel Computing

Toolbox Performance Profiling
Ayu Fazillah Alias #1, Mohamed Faidz Mohamed Said #2

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 ayufazillahalias@gmail.com

2 faidzms@ieee.org

Abstract— Forecasting the execution time of computer programs

is an important but challenging problem in the society of

computer systems. Code analysis tools are indispensable to

comprehend program behaviour. Profile tools utilize the

aftereffects of time estimations in the execution of a program to

increase comprehension and in this way help in the advancement

of the code. This research paper is about a case study on

MATLAB parallel computing toolbox performance profiling.

The parallel profiler runs an extension of the profile command

and the profile viewer exclusively for communicating jobs, to

allow user to see how much time each worker spends estimating

each function and how much time communicating or waiting for

communications with the other workers. Thus, the programmers

can improve their system so that the system can run smoothly.

Besides, it can increase the quality of code to become better than

before. This will conclude how important the profiling whiles do

the programming.

Keyword: MATLAB, parallel, computing, toolbox, profiling

I. INTRODUCTION

Huge plan models contain a huge numbers of model

components. The engineers effectively get overpowered

keeping up the consistency of such outline models after some

time. Not just it is difficult to distinguish new irregularities

when the model changes, it is likewise difficult to find known

irregularities [1]. Software profiling is the investigation of PC

program performed by measuring the time spent on each of

code, code scope or memory use amid its execution. Profiling

is the initial move towards effective programming.

Concentrating the streamlining just on the bottlenecks is

known to amplify productivity in both advancement time and

program runtime. Since components that influence the

execution time are hard to anticipate previously, and the

bottleneck are particularly hard to distinguish, the need of

profiling instrument are evident [2].

A. Definition

Profiling is an approach to measure where a program

spends time. After distinguishing which function are

devouring the most time, it can assess for conceivable

execution changes. Besides, it can profile the code as a

debugging tool. For instance, figuring out which lines of code

MATLAB does not run can help create test cases that activity

of the code. On the off chance that there is a blunder in the file

when profiling, it will demonstrate what ran and what did not

to help segregate the issue [3].

II. HISTORICAL BACKGROUND

A. MATLAB history

The main MATLAB was composed in 2000 lines of

Fortran, with Matrices as the main information sort, 80

functions, no .m documents and no tool stash. Jack Little, one

of Moler's understudies saw MATLAB possibilities in Control

frameworks and Signal Processing. They established together

Mathworks, Inc. in 1980. Mathworks is currently in charge of

improvement, deal, and support for MATLAB. MATLAB was

revised in C with greater usefulness, for example, plotting

schedules, and now it contains more than 80,000 functions [4].

B. Profiling Process and Guidelines:

1. Run the Profiler on the code.

2. In the Profile Summary report, search for capacities that

use utilization a lot of time or that are called generally

often.

3. View the Profile Detail report for those functions, and

search for the lines of code that take the most time or are

called frequently.

4. Decide if there are changes that can make to those lines of

code to enhance execution.

5. Execute the potential execution upgrades in the code.

Spare the document and run clear all. Run the Profiler

again and contrast the outcomes with the first report [3].

III. LITERATURE REVIEW

From research paper [5], the aim of the gprof profiling tool

is to enable the user to assess elective executions of

deliberations. Researchers built up this device because of to

enhance a code generator they were composing. The profile

can be utilized to look at and evaluate the expenses of

different usage. The profiler keeps running on a period sharing

framework utilizing just the ordinary administrations given by

the working framework and compilers.

mailto:ayufazillahalias@gmail.com

Journal of Advanced Computing Research Vol. 2, Issue 1 (2017) 16-18

17

Figure 1. The call graph profile

Figure 2. Profile entry

 From research paper [2], it reviews the distinctive

accessible bundles to profile code and demonstrates the focal

points and burdens of each of them. This review shows that,

regardless of being a long way from the instinct and ease of

use of the MATLAB profiler, the distinctive created devices

are getting nearer to it. For instance, the graphical show of the

connection between capacities in proftools is helpful and

instinctive and MATLAB does not give anything like this.

Figure 3. Comparison between different profilers

 From research paper [6], the research is to register the

vitality devoured by each assignment in parallel application.

TPROF powerfully follows the parallel execution and

utilizations, a novel method to gauge the per-assignment

vitality utilization. TPROF can precisely register and imagine

nitty gritty breakdowns of the vitality devoured by each

undertaking and can enable the software engineer to

comprehend where the vitality is spent inside his parallel

application.

Figure 4. Example execution on a four-core processor

From research paper [7], computing systems today are

widespread and extend from the little device to the vast

servers, server farms and computational networks. At the heart

of such frameworks are administration parts that choose how

timetable to execution of various projects additional time, how

to assign to each program assets, for example, memory,

stockpiling and systems administration. In this paper, they

proposed the SPORE to fabricate the connection between

execution time of PC projects and components of the projects.

From research paper [8], FOLD Profiler is a MATLAB

code for arranging the states of profiles of collapsed surfaces

as per an assortment of existing strategies. The client is

offered a decision of four techniques, each in light of an

alternate sort of capacity (cubic Bezier bends, conic segments,

control capacities and super circles). Thus, the investigation of

an overlap appendage is fast and takes under two minutes.

IV. CONCLUSION

This paper describes the uses of Profiling in MATLAB

software. The Profiling tool is very important to measure time

spent on each of the code so that the programmers would

know what the problems about the code are and try to reduce

the time spent. The profiler is a valuable tool for enhancing an

arrangement of schedules that execute a deliberation. It can be

useful in recognizing inadequately coded schedules, and in

assessing the new calculations and code that supplant them.

Taking full favorable position of the profiler requires a

watchful examination of the call diagram profile, and an

exhaustive information of the deliberations hidden the

program. The most effortless enhancement that can be

performed is a little change to a control develop or

information structure that enhances the running time of the

program. A conspicuous beginning stage is a normal that is

called commonly. For instance, assume a yield routine is the

main parent of a standard that arrangements the information.

On the off chance that this arrangement routine is extended

inline in the yield schedule, the overhead of a capacity call

and return can be put something aside for every datum that

should be organized. The good code depends on less time

spent while running the code.

REFERENCES

Journal of Advanced Computing Research Vol. 2, Issue 1 (2017) 16-18

18

[1] A. Egyed, "Automatically Detecting and Tracking Inconsistencies

in Software Design Models," IEEE Transactions on Software
Engineering, vol. 37, 2011.

[2] A. Rubio and F. de Villar, "Code Profiling in R: A Review of

Existing Methods and an Introduction to Package GUIProfiler," R
JOURNAL, vol. 7, pp. 275-287, 2015.

[3] (June 14, 2017). Profile to Improve Performance. Available:

https://www.mathworks.com/help/matlab/matlab_prog/profiling-
for-improving-performance.html#responsive_offcanvas

[4] C. Moler. (2014). The Origins of MATLAB. Available:
https://www.mathworks.com/company/newsletters/articles/the-

origins-of-matlab.html

[5] S. L. Graham, P. B. Kessler, and M. K. McKusick, "gprof," ACM
SIGPLAN Notices, vol. 39, p. 49, 2004.

[6] I. Manousakis, F. S. Zakkak, P. Pratikakis, and D. S. Nikolopoulos,

"TProf: An energy profiler for task-parallel programs,"
Sustainable Computing: Informatics and Systems, 2013.

[7] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik,

"Predicting execution time of computer programs using sparse
polynomial regression," in Advances in neural information

processing systems, 2010, pp. 883-891.

[8] R. J. Lisle, J. L. Fernández Martínez, N. Bobillo-Ares, O.
Menéndez, J. Aller, and F. Bastida, "FOLD PROFILER: A

MATLAB ®—based program for fold shape classification,"

Computers and Geosciences, vol. 32, pp. 102-108, 2006.
[9] K. Whipple, C. Wobus, B. Crosby, E. Kirby, and D. Sheehan,

"New tools for quantitative geomorphology: extraction and

interpretation of stream profiles from digital topographic data,"
GSA Short Course, vol. 506, 2007.

[10] B. Vermeulen, A. J. F. Hoitink, and M. G. Sassi, "On the use of

horizontal acoustic Doppler profilers for continuous bed shear
stress monitoring," International Journal of Sediment Research,

vol. 28, pp. 260-268, 2013.

[11] C. Sharmistha, K. N. Jukka, and S. Matti, "Design of energy-
efficient location-based cloud services using cheap sensors,"

International Journal of Pervasive Computing and

Communications, vol. 9, pp. 115-138, 2013.

[12] G. Pryor, B. Lucey, S. Maddipatla, C. McClanahan, J. Melonakos,

V. Venugopalakrishnan, et al., "High-level GPU computing with

Jacket for MATLAB and C/C++," in SPIE Defense, Security, and
Sensing, 2011, pp. 806005-806005-6.

[13] D. S. Mueller, "extrap: Software to assist the selection of

extrapolation methods for moving-boat ADCP streamflow
measurements," Computers and Geosciences, vol. 54, pp. 211-218,

2013.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, "Thinkair:
Dynamic resource allocation and parallel execution in the cloud

for mobile code offloading," in Infocom, 2012 Proceedings IEEE,

2012, pp. 945-953.
[15] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A.

Fasih, "PyCUDA and PyOpenCL: A scripting-based approach to

GPU run-time code generation," Parallel Computing, vol. 38, pp.
157-174, 2012.

[16] M. Garg and L. Dewan, "Non-recursive Haar Connection

Coefficients Based Approach for Linear Optimal Control,"

Journal of Optimization Theory and Applications, vol. 153, pp.

320-337, 2012.

[17] A. F. Alias. (2017, May 23). 170525 CSC580 AFA. Retrieved from
https://www.youtube.com/watch?v=1jhQVK2qx8I

http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html#responsive_offcanvas
http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html#responsive_offcanvas
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html

