
Journal of Advanced Computing Research Vol. 2, Issue 2 (2017) 12-16

12

Parallel Programming using MPI - A Case Study on

Hello World
Amira Adila bt Abdul Manab #1, Mohamed Faidz Mohamed Said #2

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 amiraadila220195@gmail.com

2 faidzms@ieee.org

Abstract—All modern information processing systems are

equipped with multicore processors, and the majority of them

also have graphics cards for carrying out vector calculations.

Every aspiring coder should know the techniques of latitude

and distributed computer programmes. This paper presents

recent trends in programming and applications using central

and whole graphics processing. Several working of the MPI

standards are shown, including the open source LAM/MPI and

MPICH implementations as well as Sun MPI, an example of a

vendor-supplied MPI implementation. Different aspects and

perspectives are investigated, such as supported MPI features,

system architecture, network hardware, and operating system.

Graph-oriented programming (GOP), a high-level abstraction

for message passing applications based on MPI, are also

included as a part of development research especially on the

low-level approach taken by MPI. The paper concludes with an

outlook on the future of the MPI standard and its

implementations, and how they are influenced by recent trends

in cluster computing.

Keywords: parallel programming, MPI, Hello World

I. INTRODUCTION

During recent years, high execution computing has come

to be a low-priced rather to many extra researchers in the

medical network than ever before. The alignment of quality

open source software program package deal and commodity

ironware strongly influenced the present enormous

reputation of Beowulf type cluster.

Among many parallel computational fashions, message-

passing has demonstrated to be a powerful one. This

paradigm is especially proper for allotted retentively

architectures and is used in these days’ engineering

application related to model, simulation, layout, and sign

processing. But, transportable message-passing parallel

scheduling was incompatible in the past due to the numerous

mismatched alternatives faced by developers.

Luckily, this issue really changed after the MPI

discussion board released its popular specification. High

performance computing is traditionally related to software

program, but normally only a small part of the code is

crucially sufficient to require the performance of compiled

languages. The relaxation of the code is typically associated

with memory control, erroneousness coping with,

enter/output, and consumer interaction. Interpreted high-

storey languages may be genuinely tremendous for this

shape of exertions.

For enforcing general-intention numerical calculation,

Matlab is the dominant interpreted programming language

in the open source side. Musical octave and Scilab are well

known, freely distributed software imparting compatibility

with the Matlab language. Nowadays, MPI for Python, a

brand new bundle package is used to take advantage of a

couple of processors by using popular MPI “appearance and

tactile assets” in Python handwriting.

Table1. MPI Communicator (MPI_Comm, MPI_COM_WORLD)

C Function Call Function Purpose

int MPI_Init(int *argc, char
**argv)

Initialize MPI

int MPI_Comm_size(MPI_Comm

comm, int *size)

Determine number of

processes within a

communicator

int MPI_Comm_rank(MPI_Comm
comm, int *rank)

Determine processor rank
within a communicator

int MPI_Finalize() Exit MPI (must be called

last by all processors)

int MPI_Send (void *buf,int

count, MPI_Datatype

datatype, int dest, int tag,
MPI_Comm comm)

Send a message

int MPI_Recv (void *buf,int

count, MPI_Datatype

datatype, int source, int tag,
MPI_Comm comm, MPI_Status

*status)

Receive a message

 MPI Definition

Message Passing Interface (MPI) is a standardized and

portable message-passing system designed by a group of

researchers from academia and industry to deal with a wide

diversity of parallel computing architectures. A program

named Hello World is one of the most basic MPI computer

programs being used.

II. HISTORY

The MPI attempt started within the summer of 1991 when

a small group of researchers began discussions at a mountain

Journal of Advanced Computing Research Vol. 2, Issue 2 (2017) 12-16

13

retreat in Austria. As a result of the dialogue, a Workshop

on requirements for Message Passing in a dispensed memory

environment was held on 29-30 April 1992 in Williamsburg,

Virginia.

Attendees at Williamsburg mentioned the simple

capabilities critical to a popular message-passing interface

and mounted a running group to retain the standardization

process. Jack Dongarra, Tony Hey, and David W. Walker

put forward an initial draft concept, “MPI1” in November

1992. A formal meeting of the MPI operating organization

was conducted in Minneapolis. Then, the MPI working

organization met each six weeks at some stage in the first

nine months of 1993. The draft MPI was presented at the

Supercomputing ‘93 conference in November 1993. After a

length of public remarks, which led to some adjustments in

MPI version 1.0 of MPI was released in June 1994. These

meetings and the email dialogue collectively constituted the

MPI discussion board, and the membership has been open to

all individuals of the high-performance-computing network.

III. REVIEW PAPER

There are numerous papers that have been reviewed to

complete this research.

A. A Beowulf Cluster for Teaching and Learning

This paper aims to explore the effects of parallel

computing on some programs in a Linux based Beowulf

cluster. The research project analyses the performance of

some selected parallel programs on the cluster in an effort to

provide a parallel computing system for the practical study

of parallel and distributed computing [1].

B. Communicating across parallel message-passing

environments

The current implementation helps manner conversation

among PVM, MPI, and PARIX. With handiest marginal

extra attempt, the interface may be tailored to support other

message-passing environments as properly. In this paper, it

shows PLUS, a lightweight, extensible and efficient

interface for the conversation among parallel message-

passing models [2].

Fig. 1. Process communication with PLUS. plus_init () gets the host

names of the PLUS master daemons running in the corresponding (local)

PLUS domains

C. Charliecloud: Unprivileged containers for user-

defined software stacks in HPC

This project is to provide those offerings in a usable way

while minimizing the risks: security, assist burden, missing

functionality and overall performance. Charliecloud is

presented which uses the Linux and mount namespaces to

run industry-trendy Docker containers with no privileged

operations or daemons on middle sources.

#define _GNU_SOURCE

#include <fcntl.h>

#include <sched.h>
#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>
int main(void)

{

uid_t euid = geteuid();

int fd;

printf("outside userns , uid=%d\n", euid);

unshare(CLONE_NEWUSER);
fd = open("/proc/self/uid_map", O_WRONLY);

dprintf(fd, "0 %d 1\n", euid);
close(fd);

printf("in userns , uid=%d\n", geteuid());

execlp("/bin/bash", "bash", NULL);

Fig. 2. Hello world implementation of a user namespace, available as

examples/userns-hello.c in the Charliecloud source code [1]

This program shown in Fig. 2 creates the namespace with

unshare(2), maps within-namespace UID 0 to the invoking

user’s EUID by writing uid_map, and then starts the root

shell [3].

D. ePython: An implementation of Python for the

many-core Epiphany coprocessor

In this paper, it presents the work on ePython, a subset of

Python for the Epiphany and similar many-core co-

processors. The end result of this work is to help developing

Python at the Epiphany, which may be implemented to

different similar architectures, that the community have

already commenced to undertake and use to discover

concepts of parallelism and HPC [4].

1 from parallel import ∗
23

print ”Hello world from core ”+ str (coreid ()
)+” of ”+ str (numcores ())

The above listing illustrates a simple hello world Python

code where each Epiphany core will display the message

with its core ID and total number of Epiphany cores.

E. Creating Java to Native Code Interfaces with Janet

Extension

As Java becomes the perfect environment for excessive

performance computing, the interest arises in combining it

with present code written in other languages. Portable Java

interfaces to local code can be advanced in the use of the

Java native Interface (JNI). The paper presents Janet - a

particularly expressive Java language extension and

preprocessing device that allows convenient integration of

native code with Java packages [5].

Journal of Advanced Computing Research Vol. 2, Issue 2 (2017) 12-16

14

Fig. 3. Use of a native library in a Java application

F. MPI for Python

This report describes the MPI for Python package deal.

MPI for Python gives bindings of the Message Passing

Interface, well known for the Python programming

language, allowing any Python program to take advantage

of more than one processor [6].

// file: helloworld.i

%module hello world
%{

#include <mpi.h>

#include "helloworld.c"
}%

%include mpi4py/mpi4py.i

%mpi4py_typemap(Comm, MPI_Comm);
void sayhello(MPI_Comm comm);

Fig 4. SWIG interface file

MPI for Python provides an object oriented approach to

message passing which grounds on the standard MPI-2 C++

bindings. The interface was designed with focus in

translating MPI syntax and semantics of standard MPI-2

bindings for C++ to Python. Any user of the standard C/C++

MPI bindings should be able to use this module without the

need of learning a new interface.

G. MYMPI - MPI programming in Python

In this paper, the discussion is on the incentive for

creating the MYMPI module, along with differences

between MYMPI and pyMPI, another MPI Python

representative [7].

A Python MPI version of “Hello world” could be written

as:

#!/usr/bin/env python
from mpi import *

import sys

initialize mpi
the initialization routine requires the

command line arguments held in sys.argv

sys.argv = mpi_init(len(sys.argv),sys.argv)
get the total number of processes in this parallel

job and "myid", the identifier for each process

myid=mpi_comm_rank(MPI_COMM_WORLD)
numprocs=mpi_comm_size(MPI_COMM_WORLD)

each process will print its identifier and the total number

of processes
print "Hello from ",myid, "The total # of processors is ",numprocs

mpi_finalize()

If this job is run on 2 processors the output might be:
Hello form 0 The total # of processors is 2

Hello form 1 The total # of processors is 2

Fig. 5. Python MPI version of “Hello world”

The researchers developed a Python module MYMPI for

creating parallel application using MPI. It can be used on a

potpourri of parallel platforms and using different MPI

libraries. It has been used in some applications and areas

including biology, astronomy and geoscience. Future

continuous characteristic will be added to the module as

needed.

H. Implementation of parallel NetCDF in the ParFlow

hydrological model: A code modernisation effort as part of

a big data handling strategy.

● Implementation of a MPI-parallel data society to only

one data flow per node (with several MPI tasks per node)

● Replacement of the ParFlow binary output module with

a NetCDF4 I/O module

● ParFlow I/O optimisation with the profiling equipment

● Density of NetCDF output

● Execution of in-situ processing in ParFlow using VisIt

on JURECA to reduce total processing time and type output

data volumes [8]

Fig. 6. JUBE2 “hello world” example and benchmark directory
preservation. Every rectangle on the right side of the Fig. represents a

subdirectory. For every parameter set permutation and the total amount of

steps subdirectories are created that “auto-document” stderr, stdout and the
explicit parameter set for the current step or test [8].

Journal of Advanced Computing Research Vol. 2, Issue 2 (2017) 12-16

15

I. Improving ease of use in BLACS and PBLAS with

Python

Researchers and engineers have to spend a considerable

amount of term efficiently in developing and discharging

codes in the environments. Developer would rather devote

the time at using their computational applications. To

alleviate this, they promote the reuse of robust software

program library like the ones in the ACTS Collecting and

the paper presents the work in a subset of the high-level

language port, PyACTS [9]. It helps users prototype their

codes using these libraries. Lastly, comparison is made

between traditional programming practices to the proposed

approach. It illustrates some examples of these interfaces

and their performance. Additionally, the researchers also

evaluate not only their performance but also how user

friendlier they are compared to the original call.

 % mpirun -np 3 pyMPI
 >>> import mpi

 >>> print ’Hello world’,mpi.rank

 Hello world 0
 Hello world 2

 Hello world 1

 >>>

PyMPI works by building an exchange startup executable

for Python, and by using all the installed base of Python code

modules, which in turn enables PyMPI to use the same

Python modules and rich functionality.

J. Architectural Skeletons: The Re-Usable Building-

Blocks for Parallel Applications

The paper defines a model for recognizing and using

parallel design patterns. The model provides many

functionalities of MPI, plus the reimbursement of the

patterns [10]. The following example illustrates a singleton

module, which does nothing in excess of printing the

drawstring Hello World. Being a single process entity, a

singleton has no children. Rep is the illustration. When the

representative codification is not filled, it simply becomes a

singleton machine. The example uses the current

specification language.

// My simple sequential program.

MyModule EXTENDS SingletonSkeleton
{

Rep {

printf ("Hello World\n");
}

}

To the best of the cognition, this skeleton in the cupboard-

-based approaching is the first of its kind that aims at

providing a monetary standard model for a parallel

computing pattern.

K. Adaptive parallel computing on heterogeneous

networks with mpC

The paper presents a new advanced version of the mpC

parallel language. The language was designed particularly

for programming high-performance parallel computations

on heterogeneous networks of computers [11].

Implementation of the function MPC_Printf by a process

consists of transferring the message “Hello, world!” to the

user’s terminal from which the whole parallel program has

been started up. Thus, the user will see N messages “Hello,

world!” on this node - just one from each occupied process.

L. A high performance Java middleware for general

purpose computing and capacity planning

In this paper, it presents Java Cá&Lá or simply JCL, a

dispensed shared memory lightweight middleware for Java

builders that separates business common sense from

distribution troubles at some point of the improvement

method [12]. It gathers numerous features provided one at a

time inside the ultimate many years of middleware literature,

allowing constructing disbursed or parallel packages with

few transportable instructions and capable to run over

extraordinary platforms, which include small ones. This

paper describes JCL’s features, compares and contrasts. It

also shows JCL to different Java middleware systems, and

reviews overall performance measurements of JCL

programs in numerous wonderful eventualities.

1 public class HelloWorld {

2
3 public void print () {

4 // Prints “Hello World!” in the console.

5 System.out.println (“Hello World!”);
6 }

7 }

Fig. 7. JCL to different Java middleware systems - version of “Hello

world”

Fig. 7 illustrates how JCL introduces distribution to an

existing chronological code. At line four, the developer gets

an example of the JCL and at line five the class “Hello

World” is registered, so it becomes noticeable to the whole

JCL cluster. At line six, the developer wishes a single

execution of the technique “print” of the registered class.

JCL “execute” technique requires the class nickname

“Hello”, the method to be executed “print” and the opinion

of such a method or null if no arguments are required.

M. Overview of the MPI Standard and

Implementations

This document first introduces the underlying paradigm,

message passing, and explores a number of the challenges

explicit message passing poses for developing parallel

programs. The document concludes with an outlook at the

future of the MPI well known and its implementations, and

how they may be influenced with the aid of current

tendencies in cluster computing [13].

The “Hello World” program is designed to run as

techniques, process zero and manner. Every method makes

use of the equal program, which then takes distinctive paths

in line with the rank of the process (rank could be defined

rapidly, for now simply consider it as a procedure identity).

The rank is decided in line nine, after that, the if-statement

makes the 2 tactics take exceptional execution paths: manner

0 sends a message “Hello World” to manner 1 (line 12), at

Journal of Advanced Computing Research Vol. 2, Issue 2 (2017) 12-16

16

the same time as procedure 1 gets this message (line 14) and

prints it on general out.

IV. METHODOLOGY

The following assumes that programmers are using

MPICH on a cluster of machines discharge some variance of

UNIX for which there is admission to all or some of the

nodes via the mpirun order. It is also assumed that the nodes

are executing the commands to compile, copy, and run the

codes from a command layer, or in a terminal window.

Typically, running MPI codes will consist of three steps

which are compile, copy and execute. For the compile, it is

assumed that a user has computer code to compile in order

to create an executable. This involves compilation of the

codes with the appropriate compiling program, linked to the

MPI program library. It is possible to pass all options

through a standard f77 bidding, but MPICH provides

support that appropriately links against the MPI libraries and

sets the appropriate include and depository library way of

life. After saving the above example file, a user can compile

the program using the mpicc command. In order for the

programme to run on each node, the executable must exist

on each node. There are as many ways to ensure that the

executable exists on all of the nodes as there are many

options to put the cluster together in the first place. Only one

method is shown to be used with the BCCD bootable cluster

CD. This method will assume that an accounting (bccd)

exists on all automobile with the same place directory

(/home/bccd), that assay-mark is being done via ssh, and that

public keystone have been shared for the account to allow

for login and remote control execution of instrument without

a password.

V. CONCLUSION

Conclusively, it is not possible to present all the

prospective actions of multiprocessor computers to use or

for programming computers in a mesh which works at a

common task. Nevertheless, OpenMP and MPI are standards

for parallel and distributed programming. In the era of

multicore computers and computer meshing, these standards

are essential for instruction programming. Typical course

usually begins with POSIX yarn in C and some popular C++

threads libraries like Hike, which should be usually enough

for basic teaching. Next step is to use multithreads in other

popular languages like Java. Present architecture tends to

integrate shared memory machines into a cluster. In that

way, the clusters use heterogeneous calculation on a mixture

OpenMP and MPI. These proficiencies are used not only for

sophisticated scientific computing but in usual auction and

shopping websites like eBay or Allegro mentioned in the

listing of peak 500 supercomputing centres.

REFERENCES

[1] R. Priedhorsky and T. C. Randles, "Charliecloud: Unprivileged

containers for user-defined software stacks," 2016.

[2] A. L. B. Almeida, "A high performance Java middleware for
general purpose computing and capacity planning," 2016.

[3] M. Panczyk, "Improving computation efficiency by parallel
programming," Актуальні проблеми економіки, no. 3, pp.

398-406, 2013.

[4] H. Xiong, D. Zhang, C. Martyniuk, V. Trudeau, and X. Xia,
"Using Generalized Procrustes Analysis (GPA) for

normalization of cDNA microarray data," BMC Bioinformatics,

vol. 9, 2008.
[5] M. Åstrand, P. Mostad, and M. Rudemo, "Empirical Bayes

models for multiple probe type microarrays at the probe level,"

BMC Bioinformatics, vol. 9, 2008.
[6] J. Hill et al., "SPRINT: A new parallel framework for R," BMC

Bioinformatics, journal article vol. 9, no. 1, p. 558, December

29 2008.
[7] S. Calza, D. Valentini, and Y. Pawitan, "Normalization of

oligonucleotide arrays based on the least-variant set of genes,"

BMC Bioinformatics, vol. 9, 2008.
[8] A. Brazma et al., "ArrayExpress – a public repository for

microarray gene expression data at the EBI," Nucl Acids Res,

vol. 31, 2003.

[9] G. Vera, R. Jansen, and R. Suppi, "R/parallel – speeding up

bioinformatics analysis with R," BMC Bioinformatics, vol. 9,

2008.
[10] H. Schwender and K. Ickstadt, "Empirical Bayes analysis of

single nucleotide polymorphisms," BMC Bioinformatics, vol. 9,
2008

[11] C. Zee, "Overview of the MPI standard and Implementations,"

Universität Stuttgart, Alemania, 2004.
[12] M. Dunning, N. Barbosa-Morais, A. Lynch, S. Tavaré, and M.

Ritchie, "Statistical issues in the analysis of Illumina data,"

BMC Bioinformatics, vol. 9, 2008.
[13] J. Bull, M. D. Westhead, M. Kambites, and J. Obdrzálek,

"Towards OpenMP for java," in European Workshop on

OpenMP (EWOMP 2000), 2000, vol. 39, p. 40.
[14] A. Lastovetsky, "Adaptive parallel computing on heterogeneous

networks with mpC," Parallel computing, vol. 28, no. 10, pp.

1369-1407, 2002.
[15] A. Reinefeld, J. Gehring, and M. Brune, "Communicating across

parallel message-passing environments," Computer Standards

& Interfaces, vol. 20, no. 6-7, p. 427, 1999.
[16] L. Poorthuis, K. Goergen, W. Sharples, and S. Kollet,

"Implementation of parallel NetCDF in the ParFlow

hydrological model: A code modernisation effort as part of a big
data handling strategy," in NIC Symposium 2016, 2016, no. FZJ-

2016-03551: Jülich Supercomputing Center.

[17] D. Goswami, A. Singh, and B. R. Preiss, "Architectural
Skeletons: The Re-Usable Building-Blocks for Parallel

Applications," in PDPTA, 1999, pp. 1250-1256.

[18] L. A. Drummond, V. G. Ibarra, V. Migallón, and J. Penadés,
"Improving Ease of Use in BLACS and PBLAS with Python,"

in PARCO, 2005, pp. 325-332.

[19] A. A. Datti, H. A. Umar, and J. Galadanci, "A Beowulf Cluster
for Teaching and Learning," Procedia Computer Science, vol.

70, pp. 62-68, 2015.

[20] L. Dalcin, "MPI for Python," ed: Release, 2010.
[21] M. Bubak, D. Kurzyniec, and P. Luszczek, "Creating Java to

native code interfaces with Janet extension," in Proceedings of

the First Worldwide SGI Users’ Conference, 2000, pp. 283-294.
[22] N. Brown, "ePython: An Implementation of Python for the

Many-Core Epiphany Co-processor," in Python for High-

Performance and Scientific Computing (PyHPC), Workshop on,
2016, pp. 59-66: IEEE.

[23] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A.

Ranawak, and C. V. Packer, "BEOWULF: A parallel
workstation for scientific computation," in Proceedings,

International Conference on Parallel Processing, 1995, vol. 95,

pp. 11-14.

[1-13] [1, 14-23]

[11]

