
Journal of Advanced Computing Research Vol. 3, Issue 2 (2018) 13-15

13

Parallel Processing Problem and Solution - A

Case Study on MATLAB Parallel Computing

Toolbox Performance Profiling
Ayu Fazillah Alias #1, Mohamed Faidz Mohamed Said #2

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 ayufazillahalias@gmail.com

2 faidzms@ieee.org

Abstract—Forecasting the execution time of computer programs

is an important but challenging problem in the society of

computer systems. Code analysis tools are indispensable to

comprehend program behaviour. Profile tools utilize the

aftereffects of time estimations in the execution of a program to

increase comprehension and in this way help in the advancement

of the code. This research paper is about a case study on

MATLAB parallel computing toolbox performance profiling.

The parallel profiler runs an extension of the profile command

and the profile viewer exclusively for communicating jobs, to

allow users to see how much time each worker spends estimating

each function and how much time communicating or waiting for

communications with the other workers. Thus, the programmers

can improve their system so that the system can run smoothly.

Besides, it can increase the quality of code to become better than

before. This will conclude how important the profiling whiles

doing the programming.

Keyword: MATLAB, parallel, computing, toolbox, profiling

I. INTRODUCTION

Huge plan models contain a huge numbers of model

components. The engineers effectively get overpowered

keeping up the consistency of such outline models after some

time. Not just it is difficult to distinguish new irregularities

when the model changes, it is likewise difficult to find known

irregularities [1]. Software profiling is the investigation of PC

program performed by measuring the time spent on each of

code, code scope or memory use amid its execution. Profiling

is the initial move towards effective programming.

Concentrating the streamlining just on the bottlenecks is

known to amplify productivity in both advancement time and

program runtime. Since components that influence the

execution time are hard to anticipate previously, and the

bottleneck are particularly hard to distinguish, the need of

profiling instrument are evident [2].

A. Definition

Profiling is an approach to measure where a program

spends time. After distinguishing which functions are

devouring the most time, it can assess for conceivable

execution changes. Besides, it can profile the code as a

debugging tool. For instance, figuring out which lines of code

MATLAB does not run can help create test cases that activite

that code. On the off chance that there is a blunder in the file

when profiling, it will demonstrate what ran and what did not

to help segregate the issue [3].

II. HISTORICAL BACKGROUND

A. MATLAB history

The main MATLAB was composed in 2000 lines of

Fortran, with matrices as the main information sort, 80

functions, no .m documents and no tool stash. Jack Little, one

of Moler's understudies saw MATLAB possibilities in control

frameworks and signal processing. They established together

Mathworks, Inc. in 1980. Mathworks is currently in charge of

improvement, deal and support for MATLAB. MATLAB was

revised in C with greater usefulness, for example, plotting

schedules, and now it contains more than 80,000 functions [4].

B. Profiling Process and Guidelines:

1. Run the Profiler on the code

2. In the Profile Summary report, search for capacities that

utilization a lot of time or that are called generally often

3. View the Profile Detail report for those functions, and

search for the lines of code that take the most time or are

called frequently

4. Decide if there are changes that can make to those lines of

code to enhance execution

5. Execute the potential execution upgrades in the code.

Spare the document and run clear all. Run the Profiler

again and contrast the outcomes with the first report [3].

III. LITERATURE REVIEW

In a research paper [5], the aim of the gprof profiling tool is

to enable user to assess elective executions of deliberations.

Researchers built up this device because to enhance a code

generator they were composing. The profile can be utilized to

look at and evaluate the expenses of different usage. The

profiler keeps running on a period sharing framework utilizing

just the ordinary administrations given by the working

framework and compilers.

mailto:ayufazillahalias@gmail.com

Journal of Advanced Computing Research Vol. 3, Issue 2 (2018) 13-15

14

Figure 1. The call graph profile

Figure 2. Profile entry

In another research paper [2], the researchers review the

distinctive accessible bundles to profile code and demonstrate

the focal points and burdens of each of them. The review

shows that, regardless of being a long way from the instinct

and ease of use of the MATLAB profiler, the distinctive

created devices are getting nearer to it. For instance, the

graphical show of the connection between capacities in

proftools is helpful and instinctive and MATLAB does not

give anything like this.

Figure 3. Comparison between different profilers

In another research paper [6], the work done is to register

the vitality devoured by each assignment in parallel

application. TPROF powerfully follows the parallel execution

and utilizes a novel method to gauge the per-assignment

vitality utilization. TPROF can precisely register and imagine

nitty gritty breakdowns of the vitality devoured by each

undertaking and can enable the software engineer to

comprehend where the vitality is spent inside his parallel

application.

Figure 4. Example execution on a four-core processor

In another research paper [7], computing system today are

widespread and extend from the little device to the vast

servers, server farms and computational networks. At the heart

of such frameworks are administration parts that choose how

timetable to execution of various projects additional time, how

to assign to each program assets, for example, memory,

stockpiling and systems administration. In this paper, they

proposed the SPORE to fabricate the connection between

execution time of PC projects and components of the projects.

In another research paper [8], FOLD Profiler is a

MATLAB code for arranging the states of profiles of

collapsed surfaces as per an assortment of existing strategies.

The client is offered a decision of four techniques, each in

light of an alternate sort of capacity that are cubic Bezier

bends, conic segments, control capacities and super circles.

Thus, the investigation of an overlap appendage is fast and

takes under two minutes.

IV. CONCLUSION

Overall this paper describes the uses of profiling in

MATLAB software. The profiling tool is very important to

measure time spent on each of the code so that the

programmers will know what the problems are about related

to the codes, and try to reduce the time spent. The profiler is a

valuable tool for enhancing arrangement of schedules that

execute a deliberation. It can be useful in recognizing

inadequately coded schedules, and in assessing the new

calculations and codes that supplant them. Taking full

favorable position of the profiler requires a watchful

examination of the call diagram profile, and an exhaustive

information of the deliberations hidden in the program. The

most effortless enhancement that can be performed is a little

change to a control development or information structure that

enhances the running time of the program. A conspicuous

beginning stage is a normal that is called commonly. For

instance, assume a yield routine is the main parent of a

standard that composes the arrangements of the information.

There is possibility that this arrangement routine is extended

inline in the yield schedule, the overhead of a capacity call

and return can be put something aside for every datum that

should be organized. Eventually, the good code depends on

less time spent while run the code.

Journal of Advanced Computing Research Vol. 3, Issue 2 (2018) 13-15

15

REFERENCES

[1] A. Egyed, "Automatically Detecting and Tracking Inconsistencies

in Software Design Models," IEEE Transactions on Software

Engineering, vol. 37, 2011.
[2] A. Rubio and F. de Villar, "Code Profiling in R: A Review of

Existing Methods and an Introduction to Package GUIProfiler," R

JOURNAL, vol. 7, pp. 275-287, 2015.
[3] (June 14, 2017). Profile to Improve Performance. Available:

https://www.mathworks.com/help/matlab/matlab_prog/profiling-

for-improving-performance.html#responsive_offcanvas
[4] C. Moler. (2014). The Origins of MATLAB. Available:

https://www.mathworks.com/company/newsletters/articles/the-

origins-of-matlab.html
[5] S. L. Graham, P. B. Kessler, and M. K. McKusick, "gprof," ACM

SIGPLAN Notices, vol. 39, p. 49, 2004.

[6] I. Manousakis, F. S. Zakkak, P. Pratikakis, and D. S. Nikolopoulos,
"TProf: An energy profiler for task-parallel programs,"

Sustainable Computing: Informatics and Systems, 2013.

[7] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik,
"Predicting execution time of computer programs using sparse

polynomial regression," in Advances in neural information

processing systems, 2010, pp. 883-891.
[8] R. J. Lisle, J. L. Fernández Martínez, N. Bobillo-Ares, O.

Menéndez, J. Aller, and F. Bastida, "FOLD PROFILER: A

MATLAB ®—based program for fold shape classification,"
Computers and Geosciences, vol. 32, pp. 102-108, 2006.

[9] K. Whipple, C. Wobus, B. Crosby, E. Kirby, and D. Sheehan,

"New tools for quantitative geomorphology: extraction and
interpretation of stream profiles from digital topographic data,"

GSA Short Course, vol. 506, 2007.

[10] B. Vermeulen, A. J. F. Hoitink, and M. G. Sassi, "On the use of
horizontal acoustic Doppler profilers for continuous bed shear

stress monitoring," International Journal of Sediment Research,

vol. 28, pp. 260-268, 2013.
[11] C. Sharmistha, K. N. Jukka, and S. Matti, "Design of energy-

efficient location-based cloud services using cheap sensors,"

International Journal of Pervasive Computing and
Communications, vol. 9, pp. 115-138, 2013.

[12] G. Pryor, B. Lucey, S. Maddipatla, C. McClanahan, J. Melonakos,
V. Venugopalakrishnan, et al., "High-level GPU computing with

Jacket for MATLAB and C/C++," in SPIE Defense, Security, and

Sensing, 2011, pp. 806005-806005-6.
[13] D. S. Mueller, "extrap: Software to assist the selection of

extrapolation methods for moving-boat ADCP streamflow

measurements," Computers and Geosciences, vol. 54, pp. 211-218,
2013.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, "Thinkair:

Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading," in Infocom, 2012 Proceedings IEEE,

2012, pp. 945-953.

[15] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A.
Fasih, "PyCUDA and PyOpenCL: A scripting-based approach to

GPU run-time code generation," Parallel Computing, vol. 38, pp.

157-174, 2012.
[16] M. Garg and L. Dewan, "Non-recursive Haar Connection

Coefficients Based Approach for Linear Optimal Control,"

Journal of Optimization Theory and Applications, vol. 153, pp.
320-337, 2012.

[17] A. F. Alias. (2017, May 23). 170525 CSC580 AFA. Retrieved from

https://www.youtube.com/watch?v=1jhQVK2qx8I

http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html#responsive_offcanvas
http://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html#responsive_offcanvas
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html

