
Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 4-6

4

Parallel Processing Applications - A Case Study on

Distributed Memory Programming with MPI
Mayasarah binti Maslizan #1, Mohamed Faidz Mohamed Said #2

Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 sarahmaya95@gmail.com

2 faidzms@ieee.org

Abstract—One of the types of parallel programming is

distributed memory programming. It refers to a multiprocessor

computer system. Each processor has its own private memory

and not permitted to be accessed by any of the other tasks.

Frequent and rapid data exchanges between the tasks are needed

for most of the distributed memory programs. MPI is

a communication process for programming parallel computers.

The objective of the MPI is to be broadly used for writing

message passing programs by generating a flexible, accessible,

and efficient benchmark for message passing. MPI remains the

vital model used in high-performance computing today. In this

research paper, there are a few applications that use distributed

memory programming and MPI with different types of models.

Besides, the research paper also attempts to show the usage of

the distributed memory programming with MPI. Results are

then stated and the conclusion is obtained.

Keywords: distributed memory, message passing interface

I. INTRODUCTION

Instead of one large memory pool all processors access, a

distributed memory system is a multiprocessor system which

has a segment of memory for each processor. Such distributed

memory machines are called message-passing systems

because two processors must pass data directly to one another

[1]. Another dissimilarity is that because each processor has

its own memory, the same program could run on a

workstation network, where each workstation has one

processor and its own memory [2]. Message passing interface

known as MPI which runs in parallel is the best common

process which obviously delivers data from one computer to

another. If each computer has its own memory and is not

shared with the others, all data exchange has to occur through

specific procedures. MPI is not a new programming language.

It is a collection of functions and macros, or a c that can be

used in C programs [3]. Majority of the MPI programs are

based on Single Program Multiple Data known as SPMD.

This means that the input data makes each copy computes

different things and executes the same number of processes.

According to [4], Message Passing Interface (MPI) is used to

draw the tear film maps by equating the formula. Next,

MPICH-G is a grid-enabled implementation of the MPI, it has

been developed to let a user runs MPI programs across several

computers at various sites using the similar commands that

would be used on a parallel computer [5]. EpiFast has been

proposed and master slave computation model has been

applied by the researcher to allow scalability on distributed

memory systems [6]. Lastly, paper [7] shows the use of the

MPI to describe the tactics and application details by

parallelizing the SPIDER software package on distributed-

memory parallel computers. This paper is organized as

follows. Background is described in Section II. Section III

state the problem statement based on this research. Section IV

show the methods used in this research and Section V defines

the results of the testing carried out. Finally, the conclusion is

given in Section VI.

II. BACKGROUND

A distributed memory system refers to an architecture

where each CPU has its own memory space, which cannot be

directly accessed by other CPUs (Figure 1). Distributed

memory systems are most mutual in wide-ranging

supercomputers, which consist of multiple computation nodes

connected by network interfaces [8]. A distributed memory

environment can also be followed on a single workstation,

where the same physical memory is logically separated. The

benefit of a distributed memory system is that huge

computational resources can be used to unravel problems [9].

The weakness is that the network interfaces are very slow and

communication to access data on other nodes is accompanied

by a latency which can be a major factor in the execution of

parallel code [10].

Figure 1. A distributed memory system [2]

MPI known as Message Passing Interface, is a collection

of procedures that can be used to create parallel programs in C

or Fortran77. MPI has been developed in 1993-1994 [11]. It

enables Single Program Multiple Data (SPMD) parallel

computing by passing the messages. In the library, there are

over 100 procedures provided. MPI is invented to allow the

users create programs that can run effectively on most parallel

architectures [12]. It is supported on virtually all High-

Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 4-6

5

Performance Computing (HPC) platforms [13]. The final

version for the draft standard became accessible in May of

1994. MPI can also support distributed program execution on

heterogeneous hardware.

III. PROBLEM STATEMENT

According to [14], message passing performance depends

on the time to transmit data through the network, also known

as latency and the amount of data that can be passed in a given

amount of time, also recognized as bandwidth. The challenges

to use the distributed memory programming with MPI in the

system are programs may not measure on lower-performance

networks and more programming changes are involved to go

from serial to parallel version. It can also be difficult to fix.

Lastly, the communication network between the nodes make

the performance limited.

IV. METHODOLOGY

In this research paper, the main focus is on how to

implement the distributed memory programming with MPI in

the suitable system or model. Based on [7], single-particle

reconstruction was implemented in system for processing

image data from electron microscopy and related field known

as SPIDER by reviewing the basic algorithmic ingredients and

the chances for their parallelization. The arrangement of MPI-

enabled SPIDER on two main processes in a structure

refinement procedure which are alignment and 3-D

reconstruction has been discussed and the details was

implemented in it. As a final point, the amount of trials faced

in the progress of the MPI version of SPIDER has been

considered and some possible techniques to amend the present

implementation are suggested.

V. RESULT

This section gives a sequence of outcomes achieved for

using distributed memory programming with MPI. The two

most time-consuming SPIDER operations which are the

multi-reference alignment and 3-D reconstruction operations

by using MPI was successfully parallelized [7]. Figure 2

below shows three different computing platforms on the wall-

clock time consumed by the parallelized SPIDER multi-

reference alignment. The alignment was implemented on the

TFIID data set while the alignment command was executed

using various numbers of processors to calculate the parallel

scalability of the alignment computation.

Figure 2. Multi-Reference Alignment [7]

The second outcome is displayed in Figure 3. The graph

below represents the performance of the parallel SIRT

reconstruction algorithm (BP RP) with the three different

platforms used to compute a 3-D reconstruction on the TFIID

dataset.

Figure 3. 3-D reconstruction operations [7]

VI. CONCLUSION

MPI or the Message-Passing Interface is a collection of

functions that can be called from C, C++, or FORTRAN

programs. A correspondent is a group of methods that can

deliver messages to each other. The single-program multiple

data or SPMD approach has been used by the numerous

parallel programs. There are a few purposes for using MPI.

Firstly, MPI is the only message passing library that can be

considered a standard. It is supported on virtually all High-

Performance Computing (HPC) platforms. Basically, it has

substituted all previous message passing libraries. Secondly, it

is not necessary to modify the source code when porting

application to a various platform that supports the MPI

standard. Lastly, vendor implementations should be able to

exploit native hardware features to optimize performance.

Any implementation is free to develop optimized algorithms.

Based on the papers reviewed, there will be numerous

applications that can use the distributed memory programming

Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 4-6

6

with MPI in the future because it has been amazingly

successful in various kinds of fields so far.

REFERENCES

[1] J. A. Izaac and J. B. Wang, "pyCTQW: A continuous-time

quantum walk simulator on distributed memory computers,"
Computer Physics Communications, vol. 186, pp. 81-92, 2015.

[2] S. Jin, Y. Chen, D. Wu, R. Diao, and Z. H. Huang,

"Implementation of Parallel Dynamic Simulation on Shared-
Memory vs. Distributed-Memory Environments," IFAC-

PapersOnLine, vol. 48, no. 30, pp. 221-226, 2015.

[3] P. Leggett, S. Johnson, and M. Cross, "CAPLib—a ‘thin
layer’message passing library to support computational mechanics

codes on distributed memory parallel systems," Advances in

Engineering Software, vol. 32, no. 1, pp. 61-83, 2001.
[4] J. González-Domínguez, B. Remeseiro, and M. J. Martín, "Parallel

definition of tear film maps on distributed-memory clusters for the

support of dry eye diagnosis," Computer Methods and Programs
in Biomedicine, vol. 139, pp. 51-60, 2017.

[5] I. Foster and N. T. Karonis, "A grid-enabled MPI: Message

passing in heterogeneous distributed computing systems," in
Proceedings of the 1998 ACM/IEEE conference on

Supercomputing, 1998: IEEE Computer Society, pp. 1-11.

[6] K. R. Bisset, J. Chen, X. Feng, V. Kumar, and M. V. Marathe,
"EpiFast: a fast algorithm for large scale realistic epidemic

simulations on distributed memory systems," in Proceedings of the

23rd international conference on Supercomputing, 2009: ACM, pp.
430-439.

[7] C. Yang et al., "The parallelization of SPIDER on distributed-

memory computers using MPI," Journal of structural biology, vol.
157, no. 1, pp. 240-249, 2007.

[8] B. Thomaszewski and W. Blochinger, "Physically based

simulation of cloth on distributed memory architectures," Parallel
Computing, vol. 33, no. 6, pp. 377-390, 2007.

[9] M. Alvioli and R. L. Baum, "Parallelization of the TRIGRS model

for rainfall-induced landslides using the message passing
interface," Environmental Modelling & Software, vol. 81, pp. 122-

135, 2016.

[10] M. Cole, "Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming," Parallel computing,

vol. 30, no. 3, pp. 389-406, 2004.
[11] P. B. Hansen, "An evaluation of the message-passing interface,"

ACM Sigplan Notices, vol. 33, no. 3, pp. 65-72, 1998.

[12] H. Sivaraj and G. Gopalakrishnan, "Random walk based heuristic
algorithms for distributed memory model checking," Electronic

Notes in Theoretical Computer Science, vol. 89, no. 1, pp. 51-67,

2003.
[13] E. G. Pinho and F. H. de Carvalho, "An object-oriented parallel

programming language for distributed-memory parallel computing

platforms," Science of Computer Programming, vol. 80, pp. 65-90,
2014.

[14] D. Feng, A. N. Chernikov, and N. P. Chrisochoides, "A Hybrid

Parallel Delaunay Image-to-Mesh Conversion Algorithm Scalable
on Distributed-Memory Clusters," Procedia Engineering, vol. 163,

pp. 59-71, 2016.

[15] Maya,
"https://www.youtube.com/watch?v=zGVGfmcudgE&rel=0."

[Online]. Available:

https://www.youtube.com/watch?v=zGVGfmcudgE&rel=0.

[15]

https://www.youtube.com/watch?v=zGVGfmcudgE&rel=0
https://www.youtube.com/watch?v=zGVGfmcudgE&rel=0

