
Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 10-12

10

Parallel Computing - A Case Study on MPI

Application Programming Interface
Nur Adilah Zulkiflee #1, Mohamed Faidz Mohamed Said #2

Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 adilahzulkiflee@gmail.com

2 faidzms@ieee.org

Abstract—Message passing interface (MPI) has been normally

recognized as the best interface option for passing message in

parallel computing backgrounds. MPI is a very general de-facto

parallel programming application programming interface (API)

for scattered memory systems. It is sometimes uncertain to

decide the necessary network architecture because the passing

interface mainly caters its location-based processes by addressing

the required transport method to be applied. Overall this

research paper would focus on the definition and the application

of the passing interface. The objectives of this research are to

study the MPI applications in the discipline of parallel

computing in real world. The result shows that the passing

interface has several advantages and is suitably used in parallel

computing. Moreover, it has been applied for python and big

data. However, on the other side, MPI has some disadvantages

and these include being easy to make mistakes and hard to

debug. For recommendation, it would be beneficial to experiment

more specific studies on the performance sensitivity issues of the

applications based on its memory latency as well as its

parameters.

Keyword: message passing interface, parallel computing

I. INTRODUCTION

Application programming interface (API) is a typically

defined technique of communication between numerous

software mechanisms. It may be used for a web-based system,

operating system, database system and computer hardware.

API is a significant part of current programming specifically

in parallel programming. They permit important new

functionality such as communication and harmonization to be

delivered to programmers without altering the original

programming language [1].

Message passing interface (MPI) is a message passing

library standard based on the agreement of the MPI Forum.

According to [2], MPI has been extensively recognized as the

message passing interface of choice in parallel computing

situations. This passing interface encompasses the description

of the syntax and semantics of library procedures and permits

users to write portable programs in the main technical

programming languages [3]. MPI has its own data types and it

supports C, C++ and Fortran. In addition, MPI setting usually

contains of at least a library for applying the API, a compiler

and linker that support the library as well as a run time

situation to launch a MPI program.

The aim of MPI is to create a convenient, effective and

flexible standard for message passing that will be extensively

used for writing message passing program accordingly (Fig.

1). It also allows users to control the passing of data between

processes through well-defined subroutines. Next, the passing

interface is sometimes indeterminate in the setup of the

appropriate network architecture because it largely maintains

the relevant run location by addressing the whatever transport

method that are being used.

Fig. 1. Example of the MPI execution model

There are several advantages of MPI in parallel computing.

This passing interface is a popular programming model.

Moreover, it is flexible, straightforward and typically

available. However, there are also disadvantages of this

passing interface in parallel programming. These include the

redesign of application, being easy to make mistakes and it is

hard to debug.

II. LITERATURE REVIEW

Since its introduction, the MPI requirement has become the

important standard for message-passing libraries in the world

of parallel computers. In [3], the paper discusses about MPI

for Fortran. The author makes a review of the passing

interface abilities and the new presented structures for Python

to improve communication presentation and good support

traditional MPI-1 operations in a Python programming

situation. MPI for Python was upgraded to support direct

communication of anything transferring the single-segment

buffer interface. This interface is a typical Python instrument

provided by certain types permitting entree in the C side to a

contiguous memory buffer containing the relevant data.

Besides that, paper [4] states that Python and MPI scatterings

can be optionally constructed as shared libraries in current

operating systems supporting dynamic networking. Then, the

Python translator can be simply permitted to run scripts in

Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 10-12

11

simultaneous and support extension modules calling MPI

functions.

Next, paper [2] focuses on the hard work to improve

interfaces for programming parallel computing properties in

certain message passing interface. This paper also studies how

MPI raises out of the desires of the technical research group

through a wide based review procedure. The development of

the passing interface is contrasted with other similar

standardization efforts. Anyway, Open MPI is one of the most

popular applications and it is also the major programming

pattern for parallel applications on scattered memory

computers [5]. Java also is added to support Open MPI,

revealing MPI functionality to Java programmers.

In [1], the authors explain about the first official condition

of a non-trivial division of MPI, the main communication API

in high presentation computing. MPI programs are often

manually or automatically rearranged when ported to a

different hardware stand, for instance by altering its original

functions to specialized versions. Meanwhile, the author [6]

compares the numerical difference between serial and MPI

parallel computations and it is shown that MPI parallel

computation clearly can give rise to a different passing

solution from the serial computations.

III. METHODOLOGY

The first editions of MPI were made to work competently

on multiprocessors which had very small work control and

thus fixed progression models. The version is continuously

pushing them to maintain a dynamic process model

appropriate for use on groups or scattered systems. This

process model would have influence on their performance.

Therefore, the researcher [7] introduces a new application of

the passing interface called FT-MPI that permits the semantics

and related kinds of setbacks to be clearly controlled by an

application via an altered MPI API (Fig. 2). In addition, a lot

of simultaneous applications are written using MPI. However,

the passing interface does not offer clear support for

relocation. This process of relocation contains the transmitting

of a process from one system to another during its

implementation. Therefore, the author [8] proposes a solution

that decreases the memory and I/O overhead in an application

stage checkpoint-based relocation method.

 Fig. 2. Example of the FT-MPI master-worker code

Meanwhile, the researchers [9] write about a new technique

called MPI Communication Management (MCM) for cloud

situations. MCM is a communications management technique

for MPI, based in the study of communication expectancies

between processes. This technique describes the essential

network topology and analyses parallel applications behaviour

in the cloud which improve the application’s messages latency

time.

Besides that, the authors [10] describe a research of the

hybrid MPI and OpenMP programming method functional to

two pseudo application standards and two real life

applications, and established advantages of the hybrid method

for performance and reserve custom on three multicore-based

simultaneous systems. As the latest high performance

computing systems that are looking toward petascale and

exascale, percore resources, for example, memory are

predictable to become smaller. In addition, the authors [11]

state that the study of hybrid MPI and threads is getting severe

attention as are parallel mesh-based replication techniques.

They believe, since the on-node performance of a hybrid

system is better than its internode performance, designers will

need to transform software to gain benefit of shared memory

and other locality. However, such alteration can now occur

more steadily after the initial port, and at a higher level than

the specific thread organization.

The growing dimension of computational groups results in

a rising possibility of disappointments, which in turn needs

application check pointing in order to survive those failures.

Original check pointing needs files to be copied from

application memory into steady storage intermediate, which

increases application completing time as it is commonly done

in a separate step [12]. In MPI situations, difficulty leads to

different communication procedures for different message

sizes. The classification of these different behaviours is

significant and valuable for software developers and network

designers. Therefore, the researchers [13] introduce an

automatic technique to obtain a classification of the

communication behaviour of a particular MPI situation using

LogP-based models. This technique automatically identifies

the message sizes where the communication behaviour

changes.

Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 10-12

12

Meanwhile, the authors [14] present a runtime system for

old MPI programs that allows the competent and clear out of

core performance of scattered memory for simultaneous

programs. The system called Big Data MPI (BDMPI),

controls the semantics of MPI’s API to organize the

implementation of a huge number of MPI methods on much

fewer compute nodes. BDMPI allows the effective

improvement out of the core parallel scattered memory codes

without a high engineering and algorithmic difficulties

connected to several stages of blocking.

IV. CONCLUSIONS

In conclusion, the primary advantages of MPI is flexible

and straightforward. This passing interface has been

increasingly and widely used in numerous parallel computing

platforms. Furthermore, the passing interface has been utilized

in python and big data programs. Besides that, the passing

interface background normally contains of at least a library

applying the API, a compiler and linker that support the

library and a run time situation to launch a MPI program.

However, MPI also has some disadvantages such as easy to

make mistakes and it is hard to debug. For recommendation, it

would be beneficial to analyse more specific studies on the

performance sensitivity of applications in terms of its memory

latency and associated parameters.

REFERENCES

[1] G. Li, R. Palmer, M. DeLisi, G. Gopalakrishnan, and R. M. Kirby,
"Formal specification of MPI 2.0: Case study in specifying a

practical concurrent programming API," Scienceof computer

programming, pp. 65-81, 2011.

[2] R. Hempel and D. W. Walker, "The emergence of the MPI

message passing standard for parallel computing," Computer

Standard & Interfaces, vol. 21, pp. 51-62, 1999.
[3] L. Dalcín, R. Paz, M. Storti, and J. D’Elía, "MPI for Python:

Performance improvements and MPI-2 extensions," Journal of

parallel and distributed computing, pp. 655-662, 2007.
[4] L. Dalcín, R. Paz, and M. Storti, "MPI for Python " Journal of

Parallel and Distributed Computing, vol. 65, pp. 1108-1115, 2005.

[5] O. Vega-Gisbert, J. E. Roman, and J. M. Squyres, "Design and
implementation of Java bindings in Open MPI," Parallel

Computing, vol. 59, pp. 1-20, 2016.

[6] S. B. Lee, "Numerical discrepancy between serial and MPI parallel
computations," International Journal of Naval Architecture and

Ocean Engineering, vol. 8, pp. 434-441, 2016.
[7] G. E. Fagg and J. J. Dongarra, "HARNESS fault tolerant MPI

design, usage and performance issues," Future generation

computer system, pp. 1127-1142, 2002.
[8] I. Cores, M. Rodriguez, P. Gonzalez, and M. J. Martín, "Reducing

the overhead of an MPI application-level migration approach,"

Parallel Computing, vol. 54, pp. 72-82, 2016.
[9] L. Espinola, D. Franco, and E. Luque, "MCM: A new MPI

Communication Management for Cloud Situation," PROCEDIA -

Computer Science, no. 2303-2307, 2017.
[10] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B.

Chapman, "High performance computing using MPI and OpenMP

on multi-core," Parallel Computing, vol. 37, pp. 562-575, 2011.
[11] D. Ibanez, I. Dunn, and M. S.Shephard, "Hybrid MPI-thread

parallelization of adaptive mesh operations," Parallel Computing,

vol. 52, pp. 133-143, 2016.
[12] P. Dorozynski et al., "Checkpointing of Parallel MPI Applications

using MPI One-sided API with Support for Byte-addressable Non-

volatile RAM," Procedia Computer Science, vol. 80, pp. 30-40,
2016.

[13] D. R. Martıneza, V. Blancob, J. C. Cabaleiroa, and F. F. R. T. F.
Penaa, "Automatic Parameter Assessment of LogP-based

Communication Models in MPI Situations," procedia Computer

Science, vol. 1, pp. 2155-2164, 2012.
[14] D. LaSalle and G. Karypis, "MPI for Big Data New tricks for an

old dog," Parallel Computing, vol. 40, pp. 754-767, 2014.

[15] N. A. Zulkiflee. (2017). Parallel Computing – A Case Study On
MPI API. Available: http://youtube.com/watch?v=u-DYD2cLimA.

[Accessed: 27-Nov-2017]

http://youtube.com/watch?v=u-DYD2cLimA

