

Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 13-15

13

Parallel Computing - A Case Study on Multicore

Computing
Afiqah Ahmad #1, Mohamed Faidz Mohamed Said #2

Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 afiqah.aa95@gmail.com

2 faidzms@ieee.org

Abstract—There are generally technical problems in integrating

components in parallel computing. In could be overcome by

applying certain mathematical approaches that would

scientifically solve specific issues relating to parallelism. The

improvement in computer technology by using numerical

method will be mainly discussed in this paper. One of the issues

is the installation of multi-core processor to achieve better

performance during the completion of programs. The processing

and completing one task commonly take too much time. The

majority improvements of technology in computers involve

mathematical methods. The prominent numerical techniques

used are matrix computation, time reduction as well as linear

system for computational area. Ordinarily, matrix unit

computation is used to maximize on-chip resource utilization and

to leverage the advantages of the current multi-core revolution to

improve the performance of data-parallel applications. Besides

that, branch and bound (B&B) algorithm, heterogeneous

architecture and pipeline algorithm are also used in science and

chemical area in order to confirm chemical reaction into living

organism. In this paper, a further discussion of different

approaches will be given with distinct algorithms and techniques

that are used from previous researches. Based on those processes

and methods for each area involved, some of it give good results

and excellence performances.

Keywords: multi-core, branch and bound, parallel computing

I. INTRODUCTION

Multi-core computing is a processing system composed of

two or more independent cores or central processing units

(CPUs). The cores are normally integrated onto a chip

multiprocessor in a single chip package. Cores in a multi-core

device may be combined together tightly or loosely. The first

multiprocessor was in 1970’s which was the Intel 4004 chip.

The emergence of multi-core processor in 2000’s is due to the

limit of improvement in the single core manufacturing, and

this turnover of idea also expands further the advancement of

the microprocessor technology.

The basis of this case study is the improvement of multi-

core by using different techniques. Apparently, multi-core is a

pioneering type of processor that was implemented into the

computer or smart phone back then. This special kind of

multiprocessor has multiple instruction multiple data (MIMD)

modes that include different cores executing different codes

also known as threads which are operating on different data.

In multi-core computer, processors have a shared memory

where all cores share the same memory through some cache

system.

Besides that, multi-processors are widely suitable beyond

many new applications that are multithread including network,

digital signal processing, and graphics. In computer

architecture, multi-core could have better performance with

much faster in cache coherency circuits in a single chip and

smaller size compared to traditional symmetric

multiprocessing (SMP). The advantages of multi-core systems

are their source codes will often be unavailable and this could

prevent compilation against the specific hardware

configuration.

Nowadays, multi cores are used in optimization and the

utilization has shown its improvements. The methods and

techniques used are mathematical and technological approach

such as superscalar, vector processing, multithreading and

linear algebra. The improvement of performance depends on

the software algorithms and its implementation. These multi-

core products are manufactured by computer technologies

companies that include AMD, ARM, Broadcom, Intel and

VIA.

The paper is organized as follows. Section II will show the

literature review for completing this case study. Section III

describes the methodology that is related with multi-core

computing. Finally, Section IV concludes this paper.

II. LITERATURE REVIEW

The purpose of this project [1] is to describe the techniques

and methods used in certain situation. At first, B&B algorithm

parallelizing technique is considered suitable for solving

optimization problems in large number of computational

fields such transportation, logistics and others. In [1] it states

that the search space in B&B represents as tree whose root

node represents the original unsolved problem while the

internal nodes are partially solved sub-problems. In [2] they

use the same method of B&B algorithm for solving large

combinatorial problems on GPU-enhanced multi-core

machines with two leads scenario such as concurrent (RLL-

GB&B) and cooperative (PLL-GB&B). Furthermore, there are

some techniques used in order to improve multi-core

processor performance. Common unit matrix is proposed in

order to maximize on-chip resource utilization and

performance of DLP application [3]. This technique is

extended with common unit matrix on single core exploited

on ILP and DLP only. The process of exploiting on ILP and

Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 13-15

14

DLP is used by SystemC where it stimulates and evaluates its

performance. There are huge differences in performance

levels between multi-core and extended single-core when

matrix unit is used. Additionally, matrix computations are

applied in implementing matrix operations at huge and

intermediate scales by using OpenMP and SWARM models

that generate better result in running parallel [4]. Fig. 1 below

shows the features of multi-core programming models while

Fig. 2 displays some matrix computations and related methods.

The result of matrix unit demonstrates that multi-core

extended has better performance compared to single-core

extended.

Fig. 1. Features of multi-core programming models

Fig. 2. Some matrix computations and related methods

On the other hand, the advantages of multi-core parallelism

include using Stencil computations which are the base of

solving problems. In parallelism, there are major issues and

challenges due to critical parameters such current architectural

features, impacts on mechanisms of cache memory,

vectorization and compilation [5, 6]. For example, limited

parallelism in current design makes the process on multi-core

platform difficult or impossible to apply [7]. This importance

of numerical kernel used is shown in the multi-level

optimization strategy and Machine Learning (ML). These

strategies are applied in order to combine manual

vectorization, space tiling, stencil composition and to predict

stencil kernel performance on multi-core architecture. Both

techniques present a comparison to succeed the objectives.

For multi-level strategy, results are compared to Pochoir

frameworks with different set of three compilers that are Intel,

Clang and GCC used on multi-core platforms [5]. There are

some other programming frameworks used in parallel

scientific computations with several parameters such as

Pthread, OpenMP, Intel Cilk Plus, Intel TBB, SWARM and

FastFlow. Among the frameworks, OpenMP and SWARM

models are tested to produce the best results running in

parallel with compiler optimisation [4]. Meanwhile the ML

demonstrates two different kernels which are the 7-point

Jacobi and seismic wave modelling. These kernels are utilized

in order to achieve the effectiveness of its approach.

Numerical kernel also uses auto-tuning method to achieve

better performances on multi-core processor. Instead of

Stencil computations techniques mentioned, certain problem

is solved by using numerical equation which is Partial

Differential Equations (PDEs). This model is used for weather

forecast which gathers the existences of PDEs whereas the

calculations need data from several neighbouring mesh nodes

to decompose computational domain [8].

III. METHODOLOGY

Parallelism is also presented by applying pipeline parallel

techniques. There are adaptive pipeline parallel scheme (AD-

PIPE), power efficient version (AE-PIPE) and pipeline

multithreading (PMT). These schemes exhibit wide

applicability in parallelizing general sequential programs on

multi-core processor [7, 9]. Usually, AD-PIPE is used to

adjust the thread number in different levels according to its

imbalances workloads dynamically that achieve a stable

partition for constant input workloads. Then, AE-PIPE is

added via scheduling threads depending on variable input

workloads. While, PMT performance is limited in remarkable

inter-core communication, the clustered pipelined

multithreading (CPMT) presented has enhanced performance

due to accelerated sequential programs on commodity multi-

core processor. CPMT provides very low average by

eliminating false sharing as well as reducing communication

operation and transit delays in the software-only approach. In

addition, chemical area also uses metabolomics pipeline

techniques for identification of chemical reactions on living

organisms. Particular chemical elements of atoms and

chemical compounds of molecules exist in samples of cells,

body fluids and others [10].

Next, heterogeneous multi-core architectures are developed

to upgrade multi-core efficiency [11-13], which means data

storage and data sharing between multiple heterogeneous

cores have new opportunity on memory system architecture.

Heterogeneous architecture for hardware use Pattern Aware

Memory Systems (PAMS) which supports static and dynamic

data structure and also has comparison with Baseline system

to prove the hardware mechanism [12]. Improved design of

heterogeneous architecture for Internet of Things (IoTs) is

achieved by applying a multi-core Task-Efficient Sink Node

(TESN). Moreover, the test is done to maximize its computing

efficiency by applying the designed Weighted-Least

Connection (WLC) task schedule strategy. In IoTs, there are

two types of cores in the sink node which are master and slave

cores [11] that deal with tasks allocation and data processing

for each sink node. The comparison between TESN and WLC

is made to confirm which strategy is the best. Then,

experimental results are shown that TESN is the better

strategy because its well efficiency, load balance, lower

congestion and it speeds up the process time of sensor nodes

clearly.

Besides that, maximization on computer efficiency also

involves the time aspect such as confirming the execution

time on processing the system. Thus, multiprocessor-system-

Journal of Advanced Computing Research Vol. 4, Issue 2 (2019) 13-15

15

on-chip (MPSoCs) has achieved its goal for reducing schedule

time by using holistic approach to resource partitioning and

multiple embedded applications of task scheduling under

memory awareness [14]. When it involves time, usually it is

also concerning the accelerators. Nowadays, there are so many

application developers that use combinations of programming

models in order to utilize the performance of the system [13].

Successively, dOpenCL approach is used in implementing the

existing OpenCL programming model for distributed systems,

and the same goes to its extension for running multiple

applications concurrently.

IV. CONCLUSION

In this paper, the algorithms and methods being discussed

have different objectives in order to make changes from

single-core into multi-core processors. There are several

algorithms required to enhance the performances of single

core processor in term of run-time system. In addition, the

existing single processor performances could be improved by

developing another technique in order to come out with multi-

core processor. Therefore, specifically by using proper

suitable algorithms and techniques, highly-effective

executions can be achieved to solve issues and problems in

multi-core architecture.

REFERENCES

[1] T.-T. Vu and B. Derbel, "Parallel Branch-and-Bound in Multi-
Core Multi-CPU Multi-GPU Heterogeneous Environments,"

Future Generation Computer Systems, vol. 56, no. Supplement C,

pp. 95-109, 2016/03/01/ 2016, doi:
https://doi.org/10.1016/j.future.2015.10.009.

[2] I. Chakroun, N. Melab, M. Mezmaz, and D. Tuyttens, "Combining

Multi-Core and GPU Computing for Solving Combinatorial
Optimization Problems," Journal of Parallel and Distributed

Computing, vol. 73, no. 12, pp. 1563-1577, 2013/12/01/ 2013, doi:

https://doi.org/10.1016/j.jpdc.2013.07.023.
[3] M. I. Soliman and A. F. Al-Junaid, "A Shared Matrix Unit for a

Chip Multi-Core Processor," Journal of Parallel and Distributed

Computing, vol. 73, no. 8, pp. 1146-1156, 2013/08/01/ 2013, doi:
https://doi.org/10.1016/j.jpdc.2013.03.004.

[4] P. D. Michailidis and K. G. Margaritis, "Scientific Computations

on Multi-Core Systems Using Different Programming
Frameworks," Applied Numerical Mathematics, vol. 104, no.

Supplement C, pp. 62-80, 2016/06/01/ 2016, doi:

https://doi.org/10.1016/j.apnum.2014.12.008.
[5] G. Sornet, F. Dupros, and S. Jubertie, "A Multi-level Optimization

Strategy to Improve The Performance of Stencil Computation,"

Procedia Computer Science, vol. 108, no. Supplement C, pp.
1083-1092, 2017/01/01/ 2017, doi:

https://doi.org/10.1016/j.procs.2017.05.217.

[6] V. Martínez, F. Dupros, M. Castro, and P. Navaux, "Performance
Improvement of Stencil Computations for Multi-core

Architectures Based on Machine Learning," Procedia Computer

Science, vol. 108, no. Supplement C, pp. 305-314, 2017/01/01/
2017, doi: https://doi.org/10.1016/j.procs.2017.05.164.

[7] Y. Lu, Y. Li, B. Song, W. Zhang, H. Chen, and L. Peng,

"Parallelizing Image Feature Extraction Algorithms on Multi-Core
Platforms," Journal of Parallel and Distributed Computing, vol.

92, no. Supplement C, pp. 1-14, 2016/05/01/ 2016, doi:

https://doi.org/10.1016/j.jpdc.2016.03.001.
[8] C. V. P. Mohan and P. Talukdar, "Three dimensional numerical

modeling of simultaneous heat and moisture transfer in a moist

object subjected to convective drying," International Journal of
Heat and Mass Transfer, vol. 53, no. 21-22, pp. 4638-4650, 2010.

[9] Y. Zhang, G. Xiao, and T. Baba, "Accelerating Sequential

Programs on Commodity Multi-Core Processors," Journal of

Parallel and Distributed Computing, vol. 74, no. 4, pp. 2257-2265,
2014/04/01/ 2014, doi: https://doi.org/10.1016/j.jpdc.2013.12.009.

[10] M. M. Jaghoori et al., "PMG: Multi-Core Metabolite

Identification," Electronic Notes in Theoretical Computer Science,
vol. 299, no. Supplement C, pp. 53-60, 2013/12/25/ 2013, doi:

https://doi.org/10.1016/j.entcs.2013.11.005.

[11] T. Qiu, A. Zhao, R. Ma, V. Chang, F. Liu, and Z. Fu, "A Task-
Efficient Sink Node Based on Embedded Multi-Core soC for

Internet of Things," Future Generation Computer Systems,

2016/12/23/ 2016, doi:
https://doi.org/10.1016/j.future.2016.12.024.

[12] T. Hussain, "A Novel Hardware Support for Heterogeneous Multi-

Core Memory System," Journal of Parallel and Distributed
Computing, vol. 106, no. Supplement C, pp. 31-49, 2017/08/01/

2017, doi: https://doi.org/10.1016/j.jpdc.2017.02.008.

[13] P. Kegel, M. Steuwer, and S. Gorlatch, "dOpenCL: Towards
Uniform Programming of Distributed Heterogeneous Multi-

/Many-Core Systems," Journal of Parallel and Distributed

Computing, vol. 73, no. 12, pp. 1639-1648, 2013/12/01/ 2013, doi:
https://doi.org/10.1016/j.jpdc.2013.07.021.

[14] H. Salamy, "An Effective Approach to Schedule Time Reduction

on Multi-Core Embedded Systems," Computers & Electrical
Engineering, vol. 64, no. Supplement C, pp. 15-33, 2017/11/01/

2017, doi: https://doi.org/10.1016/j.compeleceng.2016.07.001.

[15] A. Ahmad. (2017). Parallel Computing – A Case Study on Multi-
core Computing. Available:

https://www.youtube.com/watch?v=fdMn-3owkxg&rel=0

[Accessed: 28-Nov-2017]

https://doi.org/10.1016/j.future.2015.10.009
https://doi.org/10.1016/j.jpdc.2013.07.023
https://doi.org/10.1016/j.jpdc.2013.03.004
https://doi.org/10.1016/j.apnum.2014.12.008
https://doi.org/10.1016/j.procs.2017.05.217
https://doi.org/10.1016/j.procs.2017.05.164
https://doi.org/10.1016/j.jpdc.2016.03.001
https://doi.org/10.1016/j.jpdc.2013.12.009
https://doi.org/10.1016/j.entcs.2013.11.005
https://doi.org/10.1016/j.future.2016.12.024
https://doi.org/10.1016/j.jpdc.2017.02.008
https://doi.org/10.1016/j.jpdc.2013.07.021
https://doi.org/10.1016/j.compeleceng.2016.07.001
https://e.powtoon.com/pub/cc?_ri_=X0Gzc2X%3DYQpglLjHJlTQGlPzdJbJHMHGSsHPisBICzadcTEA8wsMg2jt0zemzbTMAJECzfSXNVXtpKX%3DSSSAT&_ei_=EiwT4nvPqVnq_hUVilXClkY_kQUpYDoINw6eynkL4KDUKPbVfXmup5cFE4yoAWwMcY-fqT8omuk2_rPkOX2nK-MW0p436A1iOPXw2B4XJ_KmvsWfYaKh05AFqLRRznT0-X3GyGG6td5ihikERwxybfwWGQCQSXBhtTS3B7Wv_65oivWjiw7LBw.

