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Abstract—Something is parallel if there is an exact level of 

independence in the order of processes. In other words, it does not 

matter in what order those processes are executed. Automatic 

parallelization is an automatic transformation of serial programs 

into equivalent programs by a compiler. Target may be a multi-

core processor namely concurrentization, a vector processor 

namely vectorization, or a cluster of loosely coupled distributed 

memory processors namely parallelization. Parallelism mining 

progression is usually a conversion of source-to-source. It 

necessitates dependence analysis to identify the dependence 

between codes. Application of available parallelism is also a 

challenge. The iterations of a 2-nested loop could be investigated 

whether they could all be run in parallel. In this paper, a relative 

study of present and past methods for automatic parallelization is 

presented. It comprises of methods like array analysis, 

commutativity analysis, scalar analysis and other similar 

techniques. The motive of this paper is to provide basic 

understanding of the methods of automatic parallelization and 

how these methods are currently being used to generate compilers 

that automatically develop parallelized applications. 

Furthermore, the challenges confronted by automatic 

parallelization are also debated and presented. 
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I. INTRODUCTION 

Parallelization is another optimization technique as 

mentioned by [1] and [2]. The objective is to lessen the 

execution time. To this end, multiple processors, or cores are 

utilized. Automatic parallelization can be defined as 

transforming serial code into vectorized or multi-threaded code 

in order to use several processors concurrently in a shared-

memory multiprocessor (SMP) machine. The automatic 

parallelization objective of is to release programmers from the 

error-prone and complex parallelization process which is 

executed manually. The need for complex program during 

compilation remains a grand challenge to achieve fully 

automatic parallelization of sequential programs. 
As a whole, almost all of the processing time of a program 

are executed inside some form of loop. Therefore, loops are the 

program control structures where auto parallelization places the 

most attention. Parallelization of loops consists of two main 

approaches: cyclic multi-threading and pipelined multi-

threading. A cyclic multi-threading parallelizing compiler will 

separate a loop so that each iteration can be processed on a 

different processor simultaneously while a pipelined multi-

threading parallelizing compiler tries to split up the serial of 

operations inside a loop to a sequence of code blocks where 

each block of code can be performed on different processors 

simultaneously. 
II. LITERATURE REVIEW 

In this section, the approaches to automatic parallelization 

are explained. There are many techniques that can be applied in 

order to optimize automatic parallelization. The techniques 

stated below are retrieved from several journals. 

A. Static and Dynamic Parallelization 

According to Mehrara [3], there are two types of automatic 

parallelization which are static parallelization and dynamic 

parallelization. In paper [4], the combination of static and 

dynamic parallelization has also been implemented. 

 

Fig. 1.  Static parallelization framework [3] 

1)  Static Parallelization: As shown in Fig. 1, these 

techniques usually make use of a combination of memory 

analysis, data flow analysis and profiling to identify potential 

loops for parallelization and generate parallel binary code 

during compile time. This parallelized binary is later executed 

along with a runtime speculation engine and then roll-back in 

case of any misspeculations. 

 
Fig. 2.  Dynamic parallelization framework [3] 
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2)  Dynamic Parallelization: As shown in Fig. 2, all steps of 

the parallelization process including monitoring, parallel region 

selection and parallel code generation need to be done at 

runtime, in addition to the runtime speculation. 

B. Generalized and Interprocedural Transformations 

Author [5] has come out with new approaches to automatic 

parallelization which are generalized transformations and 

interprocedural transformations for complete applications. 

1) Generalized Transformations: Most earlier work cannot 

apply parallelization when loops contain conditional control 

flow. Therefore, a wide selection of loop conversions is 

improved to deal with conditional branches using the control 

dependence representation. Bastoul [6] has also been using the 

same approach as McKinley [5] while authors [8] applied this 

similar technique in their research but they named it as 

Generalized Induction Variables (GIV). 

2) Interprocedural Transformations: Author [5] introduce 

two new interprocedural conversions which are loop 

embedding and loop extraction that expose loop nest to other 

optimizations without incurring costs related with procedure 

inlining. The author also presents strategy for determining the 

benefits and safety of these two transformations when 

combined with other loop-based optimizations. Authors in [7] 

also applied this approach in automatic parallelization. 

Moreover, this approach also has been utilized by authors [8] 

but they are using different name which is Interprocedural 

Symbolic Analysis. 

C. Scalar and Array Analysis 

According to [9], program dependences have to be analysed 

and observed with every conversion. The full dependence 

relation is a transitive relation. Direct dependences are well-

defined as such dependences that cannot be displayed 

transitively by other dependences. References [7] and [10] 

explain that scalar analysis separates a program to analyse the 

use of scalar variable and to identify the dependencies between 

these variables. The scalar and array analyses in static single 

assignment form also have been implemented by [4]. Such 

cases that can be parallelized due to these dependence problems 

will be detected by scalar analysis. The segments which are 

unable to be detected as parallelizable will then be parallelized 

by array analysis. Furthermore, parallelization can be identified 

by scalar analysis if it may be allowed or not by using reduction 

or privatization conversions. Scalar analysis is also utilized to 

determine dependencies on array elements by their indices. Fig. 

3 below shows an example of loop by array analysis.  

 

        
Fig. 3.  Loop by array analysis [6] 

 

Array analysis is the matching part of scalar analysis. Array 

analysis has one method that is useful on array data to find 

privatizable arrays. A technique called privatization will assign 

a duplicate of the working or complete part of the array to each 

equivalent case that references it as the information that brings 

zero dependencies to the section in question. Fig. 4 displays a 

section of code that cannot be privatized even it has a data 

dependence. The loop needs a conversion of the information in 

order to parallelize the code section. The array analysis will fail 

to parallelize this section of program if a conversion cannot be 

applied. 

 
Fig. 4.  Non-privatizable array [6] 

 

Reference [8] also described that data can be privatized to 

loop iteration if the data are used temporarily within the loop 

so that each processor contributing in the loop execution has 

different storage for the data. This resolves many data 

dependences that would rise if all loop repetitions used the 

same temporary storage for their operations. Very powerful 

tools provided by these two types of analyses can parallelize 

code based on scalar and array variables in the loop sections of 

the program. 

Nevertheless, the processor must be able to optimize inter-

procedurally in order to exploit the potential of these forms of 

analysis, thus permitting parallel to extent across function 

limitations. In an imperative language like C, this analysis is 

very powerful. Yet, these analytical techniques might not do the 

trick with a richer language like C++ or Java. 

D. Commutativity Analysis 

Based on [7] and [10], all the processes where the 

commutativity analysis will be determined must be separated 

into object section and an invocation section. Invocation 

section makes calls to operations while object section provides 

any access into the receiver. In this segment, the receiver is not 

available. The compiler uses two conditions in order to test the 

commutability of operation according to [7]. 

First, the fresh meaning of individual variable of objects 

receiver of M and N have to be the similar once the object 

segment performance of M trailed by the object segment of N 

as after the object segment performance of N trailed by the 

object segment of M. 

Second, the multiple set of process immediately raised by 

either M or N below the performance order M followed by N 

have to be the similar as the multiple set of processes 

immediately raised by either M or N under the performance 

order N followed by M. 
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Fig. 5.  Example of commutativity analysis [6] 

 

Fig. 5 taken from the journal by [7] shows a code section that 

can be identified to be commutative. The method that has the 

object as a receiver retrieves only the instance variables. The 

language become a bit more tough to program in due to these 

limitations. 

 

 

Fig. 6.  Commutativity analysis cannot parallelize this method [6] 

Fig. 6 demonstrates a section of source code where the 

commutativity analysis cannot be parallelized. Other than that, 

the instance variable is assigned with a value that is coded in a 

way that is not divisible. The code: 

 
denies the separability rules. The object segment is entwined 

with the invocation part. To do its calculations, the object 

segment relies on the invocation segment. This can be a crucial 

problem in today’s programming atmosphere. 

III. METHODOLOGY 

A. High Level Parallelization 

As stated by [10], high level parallelization is known as a 

method for putting parallelized output into an intermediate 

language. The main focus of this method is on the construction 

of a parallel run-time library that is to which parallelized codes 

are linked. There are three stages in high level parallelization 

according to [7]. 

1) Scalarization: This technique transforms specific array 

programs of FORTRAN 90 into corresponding loops while 

protecting the semantic of the programs. 

2) Transformation: This conversion stage optimizes loops 

for single processor machines. 

3) Interprocedural Analysis and Inlining: The 

parallelization optimizations is concentrated in this phase. To 

improve the parallelization results, an interprocedural data flow 

analysis is executed. But presently, the segment of 

interprocedural data flow has been removed from the processor. 

This method has been enhanced, with improvement such as 

outlining, select iteration reordering transformations and 

locality optimizations. The second improvement was outlining, 

a technique that can be relatively defined as the contradict of 

inlining. The procedure contains regions definition of the 

statement and statement combination of a procedure. 

B. Instruction-Level Parallelism 

Parallel computers, as well as research on parallel languages, 

compilers, and distribution techniques, first emerged in the late 

1960s. Bliss [11] states that instruction-level parallelism has 

been one of the most successful research areas, which refers to 

the effort of determining instructions in the program that can be 

performed out of order or in parallel and arrange them to 

decrease the computation time. 

 

Fig. 7.  A program is represented by a parse tree or signal flow graph [7] 

Fig. 7 illustrates a simple program and an associated signal 

flow graph or parse tree. Note that there are no dependencies 

between the computation of C and F. Nodes 4, 5, 6, 8, and 10 

are not connected to nodes 1, 2, 3, 7, and 9. The two addition 

operations can be executed in parallel since they are lack of 

dependencies. If the structure allows for several instructions to 

be executed at once, this method can significantly speed up 

program performance. Such instruction-level parallelism has 

been combined into a number of mainstream compilers. 

Unfortunately, instruction-level parallelism does not solve 

the automatic parallelization completely. It is not enough to 

build a signal flow graph or parse tree of a program, identify 

what nodes can be performed in parallel and then split up the 

program accordingly. 

C. Parallel Reductions 

This approach was applied by reference [8]. The program of 

the type sum = sum + a(i) where i is the loop index show a 

reappearance pattern that generally must be executed in 

sequence. However, a parallel execution is possible because the 

sum execution is mathematically commutative and associative. 

This can be done by collecting partial sums on each processor, 

and then summing the partial results, as shown in Fig. 8. The 

partial results may be summed later when the loop in a critical 

segment. Note that this conversion may change the output 

because reordering the sum processes may bring to round-off 

errors that are different from those in the original code. The 

codes in the Perfect Benchmarks suite have not been found to 

be sensitive to such reorganization. 
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Fig. 8.  Expanded parallel reduction transformation [8] 

D. Parallel Loops Mapping 

This technique has been tested by authors [8] by using the 

restructuring compiler as a starting point for hand-optimized 

codes to discover parallelism, but then it is mapped to the 

machine poorly. They use various methods to improve this 

technique such as strip-mining, loop coalescing, outer loop 

parallelization, loop fusion and data localization. 

E. Polyhedral Transformation Framework 

The task of program optimization for parallelism and locality 

in the polyhedral model may be viewed in terms of three phases 

according to reference [12]. Those phases are static dependence 

analysis of the input program, transformations in the polyhedral 

abstraction and generation of code for the transformed program. 

Authors [12] have prototyped an end-to-end practical 

parallelizer and locality optimizer in the polyhedral model. 

Their system generates tiled code for statement domains of 

arbitrary dimensionalities under statement-wise affine 

transformations for data locality optimization as well as shared 

memory parallel execution. Fig. 9 exhibits the components of 

their prototype system for automatic parallelization. Other than 

this paper [12], this approach has also been implemented on 

Intel Many Integrated Core (IMIC) by authors [13]. 

 
Fig. 9.  Source-to-source transformation system prototype [9] 

F. AutoFutures: Automatic Asynchronous Method Calls 

In reference [14], AutoFutures was presented, a method that 

automatically determines parallelizable parts in sequential code 

and then reorganize them for multicore. This method stresses 

minimal alteration to sequential code. AutoFutures increase the 

acceptance of parallel software and make parallel code easy to 

understand. Static analysis was used to determine code that can 

be processed asynchronously. 

Without any data dependencies, these precondition problems 

will search space for parallelization possibility down to code 

that can verifiably be processed in parallel. This could be part 

of a processor. The synchronization has to be addressed after 

code hotspots have been determined. A placeholder for the 

result of an asynchronous computation is being served by a 

AutoFutures. AutoFutures propose an easy way to hide 

synchronization code and specify asynchronicity. 

G. Generalized and Interprocedural Transformations 

Jablin [15] on the other hand, has applied automatic 

parallelization in Graphics Processing Unit (GPUs) by using 

pipeline parallelism techniques. Pipeline parallelism extends 

the applicability of GPUs by exposing independent work units 

for code with loop-carried dependences. A pipeline consists of 

several stages distributed over multiple threads. Each stage 

executes in parallel with data passing from earlier to later stages 

through high-speed queues. Automatic pipeline parallelization 

techniques construct pipelines from sequential loops by 

partitioning instructions into different stages [16]. Careful 

partitioning segregates dependent and independent operations. 

Stages with loop-carried dependences are called sequential 

stages. Stages without loop-carried dependences are called 

parallel stages. Each iteration of a parallel stage can execute 

independently on different processors. 

IV. CONCLUSION 

As computer technologies are expanding rapidly in the world 

of computing, auto parallelization in a processor is becoming 

more significant. Automatic parallelization has become a 

crucial step in developing well-organized code for various 

multithreading applications. In this paper various methods of 

achieving automatic parallelization has been discussed. It is 

found that scalar and array analysis when used in combination 

act as a powerful tool for parallelization of applications. By 

using the subset of C++, commutativity analysis worked so 

well. At present, there are multiple techniques combination of 

parallelization in a compiler. 

Many obstacles occur in the exhibition of automatic 

parallelization for large-scale computational applications. 

These problems are required to be resolved when automatic 

parallelization has to be demonstrated on large-scale 

computational applications. It is clear that parallelization is not 

fully automatic yet. There are obvious methods that need to be 

followed to allow compilers with automatic parallelization. 

There are many tools for demonstrating automatic 

parallelization. Though the parallel codes can be developed by 

automatic parallelization tools, additional attempts are needed 

to optimize those codes in matters of performance. These tools 

should make an effort to omit the loops with smaller execution 

time. 
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