
Journal of Advanced Computing Research Vol. 5, Issue 1 (2023) 1-5

1

Parallel Processing - A Case Study on Automatic

Parallelization
Abdul Muiz Abdul Ghafar #1, Mohamed Faidz Mohamed Said #2

Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA

70300 Seremban, Negeri Sembilan, MALAYSIA
1 muizghafar123@gmail.com

2 mohdfaidz@uitm.edu.my

Abstract—Something is parallel if there is an exact level of

independence in the order of processes. In other words, it does not

matter in what order those processes are executed. Automatic

parallelization is an automatic transformation of serial programs

into equivalent programs by a compiler. Target may be a multi-

core processor namely concurrentization, a vector processor

namely vectorization, or a cluster of loosely coupled distributed

memory processors namely parallelization. Parallelism mining

progression is usually a conversion of source-to-source. It

necessitates dependence analysis to identify the dependence

between codes. Application of available parallelism is also a

challenge. The iterations of a 2-nested loop could be investigated

whether they could all be run in parallel. In this paper, a relative

study of present and past methods for automatic parallelization is

presented. It comprises of methods like array analysis,

commutativity analysis, scalar analysis and other similar

techniques. The motive of this paper is to provide basic

understanding of the methods of automatic parallelization and

how these methods are currently being used to generate compilers

that automatically develop parallelized applications.

Furthermore, the challenges confronted by automatic

parallelization are also debated and presented.

Keywords: parallelism, automatic parallelization, compilers

I. INTRODUCTION

Parallelization is another optimization technique as

mentioned by [1] and [2]. The objective is to lessen the

execution time. To this end, multiple processors, or cores are

utilized. Automatic parallelization can be defined as

transforming serial code into vectorized or multi-threaded code

in order to use several processors concurrently in a shared-

memory multiprocessor (SMP) machine. The automatic

parallelization objective of is to release programmers from the

error-prone and complex parallelization process which is

executed manually. The need for complex program during

compilation remains a grand challenge to achieve fully

automatic parallelization of sequential programs.
As a whole, almost all of the processing time of a program

are executed inside some form of loop. Therefore, loops are the

program control structures where auto parallelization places the

most attention. Parallelization of loops consists of two main

approaches: cyclic multi-threading and pipelined multi-

threading. A cyclic multi-threading parallelizing compiler will

separate a loop so that each iteration can be processed on a

different processor simultaneously while a pipelined multi-

threading parallelizing compiler tries to split up the serial of

operations inside a loop to a sequence of code blocks where

each block of code can be performed on different processors

simultaneously.
II. LITERATURE REVIEW

In this section, the approaches to automatic parallelization

are explained. There are many techniques that can be applied in

order to optimize automatic parallelization. The techniques

stated below are retrieved from several journals.

A. Static and Dynamic Parallelization

According to Mehrara [3], there are two types of automatic

parallelization which are static parallelization and dynamic

parallelization. In paper [4], the combination of static and

dynamic parallelization has also been implemented.

Fig. 1. Static parallelization framework [3]

1) Static Parallelization: As shown in Fig. 1, these

techniques usually make use of a combination of memory

analysis, data flow analysis and profiling to identify potential

loops for parallelization and generate parallel binary code

during compile time. This parallelized binary is later executed

along with a runtime speculation engine and then roll-back in

case of any misspeculations.

Fig. 2. Dynamic parallelization framework [3]

Journal of Advanced Computing Research Vol. 5, Issue 1 (2020) 1-5

2

2) Dynamic Parallelization: As shown in Fig. 2, all steps of

the parallelization process including monitoring, parallel region

selection and parallel code generation need to be done at

runtime, in addition to the runtime speculation.

B. Generalized and Interprocedural Transformations

Author [5] has come out with new approaches to automatic

parallelization which are generalized transformations and

interprocedural transformations for complete applications.

1) Generalized Transformations: Most earlier work cannot

apply parallelization when loops contain conditional control

flow. Therefore, a wide selection of loop conversions is

improved to deal with conditional branches using the control

dependence representation. Bastoul [6] has also been using the

same approach as McKinley [5] while authors [8] applied this

similar technique in their research but they named it as

Generalized Induction Variables (GIV).

2) Interprocedural Transformations: Author [5] introduce

two new interprocedural conversions which are loop

embedding and loop extraction that expose loop nest to other

optimizations without incurring costs related with procedure

inlining. The author also presents strategy for determining the

benefits and safety of these two transformations when

combined with other loop-based optimizations. Authors in [7]

also applied this approach in automatic parallelization.

Moreover, this approach also has been utilized by authors [8]

but they are using different name which is Interprocedural

Symbolic Analysis.

C. Scalar and Array Analysis

According to [9], program dependences have to be analysed

and observed with every conversion. The full dependence

relation is a transitive relation. Direct dependences are well-

defined as such dependences that cannot be displayed

transitively by other dependences. References [7] and [10]

explain that scalar analysis separates a program to analyse the

use of scalar variable and to identify the dependencies between

these variables. The scalar and array analyses in static single

assignment form also have been implemented by [4]. Such

cases that can be parallelized due to these dependence problems

will be detected by scalar analysis. The segments which are

unable to be detected as parallelizable will then be parallelized

by array analysis. Furthermore, parallelization can be identified

by scalar analysis if it may be allowed or not by using reduction

or privatization conversions. Scalar analysis is also utilized to

determine dependencies on array elements by their indices. Fig.

3 below shows an example of loop by array analysis.

Fig. 3. Loop by array analysis [6]

Array analysis is the matching part of scalar analysis. Array

analysis has one method that is useful on array data to find

privatizable arrays. A technique called privatization will assign

a duplicate of the working or complete part of the array to each

equivalent case that references it as the information that brings

zero dependencies to the section in question. Fig. 4 displays a

section of code that cannot be privatized even it has a data

dependence. The loop needs a conversion of the information in

order to parallelize the code section. The array analysis will fail

to parallelize this section of program if a conversion cannot be

applied.

Fig. 4. Non-privatizable array [6]

Reference [8] also described that data can be privatized to

loop iteration if the data are used temporarily within the loop

so that each processor contributing in the loop execution has

different storage for the data. This resolves many data

dependences that would rise if all loop repetitions used the

same temporary storage for their operations. Very powerful

tools provided by these two types of analyses can parallelize

code based on scalar and array variables in the loop sections of

the program.

Nevertheless, the processor must be able to optimize inter-

procedurally in order to exploit the potential of these forms of

analysis, thus permitting parallel to extent across function

limitations. In an imperative language like C, this analysis is

very powerful. Yet, these analytical techniques might not do the

trick with a richer language like C++ or Java.

D. Commutativity Analysis

Based on [7] and [10], all the processes where the

commutativity analysis will be determined must be separated

into object section and an invocation section. Invocation

section makes calls to operations while object section provides

any access into the receiver. In this segment, the receiver is not

available. The compiler uses two conditions in order to test the

commutability of operation according to [7].

First, the fresh meaning of individual variable of objects

receiver of M and N have to be the similar once the object

segment performance of M trailed by the object segment of N

as after the object segment performance of N trailed by the

object segment of M.

Second, the multiple set of process immediately raised by

either M or N below the performance order M followed by N

have to be the similar as the multiple set of processes

immediately raised by either M or N under the performance

order N followed by M.

Journal of Advanced Computing Research Vol. 5, Issue 1 (2020) 1-5

3

Fig. 5. Example of commutativity analysis [6]

Fig. 5 taken from the journal by [7] shows a code section that

can be identified to be commutative. The method that has the

object as a receiver retrieves only the instance variables. The

language become a bit more tough to program in due to these

limitations.

Fig. 6. Commutativity analysis cannot parallelize this method [6]

Fig. 6 demonstrates a section of source code where the

commutativity analysis cannot be parallelized. Other than that,

the instance variable is assigned with a value that is coded in a

way that is not divisible. The code:

denies the separability rules. The object segment is entwined

with the invocation part. To do its calculations, the object

segment relies on the invocation segment. This can be a crucial

problem in today’s programming atmosphere.

III. METHODOLOGY

A. High Level Parallelization

As stated by [10], high level parallelization is known as a

method for putting parallelized output into an intermediate

language. The main focus of this method is on the construction

of a parallel run-time library that is to which parallelized codes

are linked. There are three stages in high level parallelization

according to [7].

1) Scalarization: This technique transforms specific array

programs of FORTRAN 90 into corresponding loops while

protecting the semantic of the programs.

2) Transformation: This conversion stage optimizes loops

for single processor machines.

3) Interprocedural Analysis and Inlining: The

parallelization optimizations is concentrated in this phase. To

improve the parallelization results, an interprocedural data flow

analysis is executed. But presently, the segment of

interprocedural data flow has been removed from the processor.

This method has been enhanced, with improvement such as

outlining, select iteration reordering transformations and

locality optimizations. The second improvement was outlining,

a technique that can be relatively defined as the contradict of

inlining. The procedure contains regions definition of the

statement and statement combination of a procedure.

B. Instruction-Level Parallelism

Parallel computers, as well as research on parallel languages,

compilers, and distribution techniques, first emerged in the late

1960s. Bliss [11] states that instruction-level parallelism has

been one of the most successful research areas, which refers to

the effort of determining instructions in the program that can be

performed out of order or in parallel and arrange them to

decrease the computation time.

Fig. 7. A program is represented by a parse tree or signal flow graph [7]

Fig. 7 illustrates a simple program and an associated signal

flow graph or parse tree. Note that there are no dependencies

between the computation of C and F. Nodes 4, 5, 6, 8, and 10

are not connected to nodes 1, 2, 3, 7, and 9. The two addition

operations can be executed in parallel since they are lack of

dependencies. If the structure allows for several instructions to

be executed at once, this method can significantly speed up

program performance. Such instruction-level parallelism has

been combined into a number of mainstream compilers.

Unfortunately, instruction-level parallelism does not solve

the automatic parallelization completely. It is not enough to

build a signal flow graph or parse tree of a program, identify

what nodes can be performed in parallel and then split up the

program accordingly.

C. Parallel Reductions

This approach was applied by reference [8]. The program of

the type sum = sum + a(i) where i is the loop index show a

reappearance pattern that generally must be executed in

sequence. However, a parallel execution is possible because the

sum execution is mathematically commutative and associative.

This can be done by collecting partial sums on each processor,

and then summing the partial results, as shown in Fig. 8. The

partial results may be summed later when the loop in a critical

segment. Note that this conversion may change the output

because reordering the sum processes may bring to round-off

errors that are different from those in the original code. The

codes in the Perfect Benchmarks suite have not been found to

be sensitive to such reorganization.

Journal of Advanced Computing Research Vol. 5, Issue 1 (2020) 1-5

4

Fig. 8. Expanded parallel reduction transformation [8]

D. Parallel Loops Mapping

This technique has been tested by authors [8] by using the

restructuring compiler as a starting point for hand-optimized

codes to discover parallelism, but then it is mapped to the

machine poorly. They use various methods to improve this

technique such as strip-mining, loop coalescing, outer loop

parallelization, loop fusion and data localization.

E. Polyhedral Transformation Framework

The task of program optimization for parallelism and locality

in the polyhedral model may be viewed in terms of three phases

according to reference [12]. Those phases are static dependence

analysis of the input program, transformations in the polyhedral

abstraction and generation of code for the transformed program.

Authors [12] have prototyped an end-to-end practical

parallelizer and locality optimizer in the polyhedral model.

Their system generates tiled code for statement domains of

arbitrary dimensionalities under statement-wise affine

transformations for data locality optimization as well as shared

memory parallel execution. Fig. 9 exhibits the components of

their prototype system for automatic parallelization. Other than

this paper [12], this approach has also been implemented on

Intel Many Integrated Core (IMIC) by authors [13].

Fig. 9. Source-to-source transformation system prototype [9]

F. AutoFutures: Automatic Asynchronous Method Calls

In reference [14], AutoFutures was presented, a method that

automatically determines parallelizable parts in sequential code

and then reorganize them for multicore. This method stresses

minimal alteration to sequential code. AutoFutures increase the

acceptance of parallel software and make parallel code easy to

understand. Static analysis was used to determine code that can

be processed asynchronously.

Without any data dependencies, these precondition problems

will search space for parallelization possibility down to code

that can verifiably be processed in parallel. This could be part

of a processor. The synchronization has to be addressed after

code hotspots have been determined. A placeholder for the

result of an asynchronous computation is being served by a

AutoFutures. AutoFutures propose an easy way to hide

synchronization code and specify asynchronicity.

G. Generalized and Interprocedural Transformations

Jablin [15] on the other hand, has applied automatic

parallelization in Graphics Processing Unit (GPUs) by using

pipeline parallelism techniques. Pipeline parallelism extends

the applicability of GPUs by exposing independent work units

for code with loop-carried dependences. A pipeline consists of

several stages distributed over multiple threads. Each stage

executes in parallel with data passing from earlier to later stages

through high-speed queues. Automatic pipeline parallelization

techniques construct pipelines from sequential loops by

partitioning instructions into different stages [16]. Careful

partitioning segregates dependent and independent operations.

Stages with loop-carried dependences are called sequential

stages. Stages without loop-carried dependences are called

parallel stages. Each iteration of a parallel stage can execute

independently on different processors.

IV. CONCLUSION

As computer technologies are expanding rapidly in the world

of computing, auto parallelization in a processor is becoming

more significant. Automatic parallelization has become a

crucial step in developing well-organized code for various

multithreading applications. In this paper various methods of

achieving automatic parallelization has been discussed. It is

found that scalar and array analysis when used in combination

act as a powerful tool for parallelization of applications. By

using the subset of C++, commutativity analysis worked so

well. At present, there are multiple techniques combination of

parallelization in a compiler.

Many obstacles occur in the exhibition of automatic

parallelization for large-scale computational applications.

These problems are required to be resolved when automatic

parallelization has to be demonstrated on large-scale

computational applications. It is clear that parallelization is not

fully automatic yet. There are obvious methods that need to be

followed to allow compilers with automatic parallelization.

There are many tools for demonstrating automatic

parallelization. Though the parallel codes can be developed by

automatic parallelization tools, additional attempts are needed

to optimize those codes in matters of performance. These tools

should make an effort to omit the loops with smaller execution

time.

Journal of Advanced Computing Research Vol. 5, Issue 1 (2020) 1-5

5

REFERENCES

[1] Y. N. Srikant, Automatic Parallelization - Part 1. Bangalore:

Department of Computer Science, Indian Institute of Science, 2011, pp.

1-6.

[2] V. D. P. Ruud, Basic Concepts in Parallelization. California: Oracle

Solaris Studio, 2010, pp. 1-6.
[3] M. Mehrara, "Static and Dynamic Parallelization: Challenges and

Opportunities", Compiler and Runtime Techniques for Automatic

Parallelization of Sequential Applications, pp. 5-8, 2011.
[4] D. R. Chakrabarti and P. Banerjee, "Global Optimization Techniques for

Automatic Parallelization of Hybrid Applications", Proceedings of the

15th International Conference on Supercomputing, pp. 166-180, 2001.
[5] K. S. McKinley, "Automatic Parallelization", Automatic and Interactive

Parallelization, pp. 12-32, 1994.

[6] C. Bastoul, "Efficient Code Generation for Automatic Parallelization
and Optimization", Proceedings of the Second International Conference

on Parallel and Distributed Computing, 2003.

[7] N. DiPasquale, V. Gehlot, and T. Way, "Comparative Survey of
Approaches to Automatic Parallelization", MASPLAS’05, pp. 1-6, 2005.

[8] K. Molitorisz, J. Schimmel, and F. Otto, "Automatic Parallelization

using AutoFutures", Multicore Software Engineering, Performance, and
Tools, 2012.

[9] T. Brandes, "The Importance of Direct Dependences for Automatic

Parallelization", Proceedings of the 2nd International Conference on

Supercomputing, pp. 408-417, 2012.

[10] M. Sohal and R. Kaur, "Automatic Parallelization: A Review",

International Journal of Computer Science and Mobile Computing, vol.
5, no. 5, pp. 17-21, 2016.

[11] N. Bliss, "Addressing the Multicore Trend with Automatic

Parallelization", Lincoln Laboratory Journal, vol. 17, pp. 187-198, 2007.
[12] R. Eigenmann, D. Padua, and J. Hoeflinger, "New Transformation

Techniques: Performance and Relevant Code Patterns", On the

Automatic Parallelization of the Perfect Benchmarks, pp. 4-20, 1998.
[13] K. Stock, L. N. Pouchet, and P. Sadayappan, "Automatic

Transformations for Effective Parallel Execution on Intel Many

Integrated Core", TACC-Intel Highly Parallel Computing Symp, pp. 1-
6, 2001.

[14] U. Bondhugula, M. Baskaran, A. Hartono, S. Krishnamoorthy, J.
Ramanujam, A. Rountev, and P. Sadayappan, "Towards Effective

Automatic Parallelization for Multicore Systems", Parallel and

Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium, 2008.

[15] T. B. Jablin, "Pipeline Parallelism", Automatic Parallelization for

GPUs, pp. 10-13, 2013.

[16] A. Muiz, "171129 CSC580 C1 AMAG Youtube", 2017. [Online].

Available:https://www.youtube.com/watch?v=sG0JLcH9Nv4.

[Accessed: 10-Dec-2017].

